自 1990 年以来,电阻尼特的表示一直基于二维电子态中发生的 QHE 的整数量化电阻平台。这些量化的电阻值为 RHU) = R'(.,JO/i,其中 R H 是量化的霍尔平台电阻 RK。!lQ 是 1990 年推荐的冯·克利青常数值,i 是整数量子数 [1]。在 1980 年发现 QHE 后的最初几年里,Si-MOSFET 和半导体异质结构(最常见的是 GaAs/Al,Ga(1)As)被用于计量表征和比较 [2-4],最近,几家国家计量研究所已经开发和改进了生长半导体 QHE 器件的配方,适用于在相对较高的电流和弱磁场下进行精确的电阻计量 [5, 6],因此该标准更容易获得并且在计量上更有用。11 不是一个简单的过程来生产在量子水平上经过良好量化的器件在源漏(-D)电流为 20 μJ 至 100 μJ 且温度为 T2:14 μJ 时,i = 2 平台在相对较低的磁通量(8 < 9 T)下工作。这要求 GaAs/AlxGa(I-x)As 异质结构中的材料成分难以复制,从而通过杂质故意降低电子迁移率以增加平台宽度,同时保持相对较高的载流子浓度 ['1]。此外,金属触点必须扩散到异质结构的器件层中,并且通常很难使用现代光刻技术获得多个高导电触点。自从使用微机械解理技术 [7] 发现石墨烯以来,已经开发出几种其他相对简单的方法来生产表现出 QHE 平台的碳基 2DEG(二维电子气)器件。单层石墨烯中独特的电子态产生了一些对基础物理来说最重要的特性,其中单粒子能带结构使电子和π都具有相对论狄拉克费米子的特性,例如,最低的Landa能级之间的间隔非常大。对于一些单层石墨烯器件,这有助于扩大i = 2 QHE平台的o(钉扎)[8, 9],并可能导致器件在比传统半导体QHE器件高得多的温度、更高的电流或更低的场下实现良好的量化,以进行精密计量。此外,在暴露表面上直接制造电极允许在各种配置中进行电子传输测量。与异质结构器件(其中2DEG埋在半导体内部)不同,石墨烯器件中的导电通道可以位于衬底的表面上,因此可以使用表面科学技术对其进行微观扫描和表征。通过使用原子力显微镜(AFM)、低能电子显微镜(LEEM)[10]、扫描隧道显微镜/光谱(STM/STS)[11J和拉曼光谱,石墨烯器件可以收集石墨烯中异常QHE状态下详细形态和微观电子结构之间关系的数据。
自 1990 年以来,电阻尼特的表示一直基于二维电子态中发生的 QHE 的整数量化电阻平台。这些量化的电阻值为 RHU) = R'(.,JO/i,其中 R H 是量化的霍尔平台电阻 RK。!lQ 是 1990 年推荐的冯·克利青常数值,i 是整数量子数 [1]。在 1980 年发现 QHE 后的最初几年里,Si-MOSFET 和半导体异质结构(最常见的是 GaAs/Al,Ga(1)As)被用于计量表征和比较 [2-4],最近,几家国家计量研究所已经开发和改进了生长半导体 QHE 器件的配方,适用于在相对较高的电流和弱磁场下进行精确的电阻计量 [5, 6],因此该标准更容易获得并且在计量上更有用。11 不是一个简单的过程来生产在量子水平上经过良好量化的器件在源漏(-D)电流为 20 μJ 至 100 μJ 且温度为 T2:14 μJ 时,i = 2 平台在相对较低的磁通量(8 < 9 T)下工作。这要求 GaAs/AlxGa(I-x)As 异质结构中的材料成分难以复制,从而通过杂质故意降低电子迁移率以增加平台宽度,同时保持相对较高的载流子浓度 ['1]。此外,金属触点必须扩散到异质结构的器件层中,并且通常很难使用现代光刻技术获得多个高导电触点。自从使用微机械解理技术 [7] 发现石墨烯以来,已经开发出几种其他相对简单的方法来生产表现出 QHE 平台的碳基 2DEG(二维电子气)器件。单层石墨烯中独特的电子态产生了一些对基础物理来说最重要的特性,其中单粒子能带结构使电子和π都具有相对论狄拉克费米子的特性,例如,最低的Landa能级之间的间隔非常大。对于一些单层石墨烯器件,这有助于扩大i = 2 QHE平台的o(钉扎)[8, 9],并可能导致器件在比传统半导体QHE器件高得多的温度、更高的电流或更低的场下实现良好的量化,以进行精密计量。此外,在暴露表面上直接制造电极允许在各种配置中进行电子传输测量。与异质结构器件(其中2DEG埋在半导体内部)不同,石墨烯器件中的导电通道可以位于衬底的表面上,因此可以使用表面科学技术对其进行微观扫描和表征。通过使用原子力显微镜(AFM)、低能电子显微镜(LEEM)[10]、扫描隧道显微镜/光谱(STM/STS)[11J和拉曼光谱,石墨烯器件可以收集石墨烯中异常QHE状态下详细形态和微观电子结构之间关系的数据。
r'J1e 美国国家标准与技术研究所于 1988 年由国会成立,旨在“协助工业界开发技术……提高产品质量、实现制造工艺现代化、确保产品可靠性……并促进基于新科学发现的产品快速商业化。” NIST 最初成立于 1901 年,当时名为美国国家标准局,致力于增强美国工业的竞争力;推进科学和工程发展;改善公共卫生、安全和环境。该机构的基本职能之一是开发、维护和保管国家测量标准,并提供将科学、工程、制造、商业、工业和教育中使用的标准与联邦政府采用或认可的标准进行比较的手段和方法。作为美国商务部技术管理局的一个机构,NIST 开展物理科学和工程领域的基础和应用研究,并开发测量技术、测试方法、标准和相关服务。该研究所从事新技术和先进技术的通用和竞争前工作。NIST 的研究设施位于马里兰州盖瑟斯堡 20899 和科罗拉多州博尔德 80303。主要技术运营单位及其主要活动如下所列。如需更多信息,请联系公共问询台,电话 301-975-3058。
美国运输安全管理局 (TSA) 负责保护国家运输系统,确保人员和商业的自由流动。www.tsa.gov TSA 培训和教育 机场监视/AOPA 培训 TSA 与飞机拥有者和飞行员协会 (AOPA) 合作,制定了一项全国性的机场监视计划,利用 650,000 多名飞行员作为观察和报告可疑活动的眼睛和耳朵。机场监视计划包括机场警告标志、信息文献和培训视频,以教导飞行员和机场员工如何加强机场安全。有关包括培训视频在内的更多信息,请访问 http://www.aopa.org/airportwatch/ 。外国人飞行/飞行学校培训 临时最终规则,外国人和其他指定个人的飞行训练和飞行学校员工的安全意识培训,要求飞行学校确保其与学生有直接接触的每位飞行学校员工(包括飞行教练、地面教练、首席教练和与学生有直接接触的行政人员)接受初始和定期的安全意识培训。飞行学校可以选择使用 TSA 的安全意识培训计划,也可以制定自己的计划。有关更多信息,请参阅 http://www.tsa.gov/what_we_do/tsnm/general_aviation/ flight_school_security.shtm 。第一观察员™ 培训 TSA 在卡车运输安全计划拨款下为第一观察员™ 计划提供资金。第一观察员的一个组成部分是安全意识培训计划。First Observer™ 网站有针对卡车和校车的在线培训模块,并计划提供其他九个模块。您可以登录网站进行培训:http://www.firstobserver.com/training/home.php 。您可以致电 (888) 217-5902 或发送电子邮件 (Firstobserver@hms-world.com) 了解更多信息。
大多数人,包括物理学家,可能都不知道实验室里的电压表或手机里的电池是如何校准的。这两项活动以及许多其他活动都主要依赖于基于国际单位制的电学单位的成功传播。电学单位的标准有着悠久的历史,可以追溯到基础实验——例如安培定律的测试。然而,今天的电学标准正受到基于量子定律和设备的现代工作的挑战,而这些定律和设备在 1960 年国际单位制建立时并不存在。理论上,电学单位都是基于两根载流导线之间的力。实际上,目前的电学单位系统基于两个不方便且具有挑战性的物理实验。电流单位由现代版的安培实验定义,该实验使用一种称为瓦特天平的设备(见图 1)。电容单位由可计算电容器实验定义,在该实验中,一个大型铜圆柱体在真空室中移过其他圆柱体。然而,在实际操作中,大多数电气单位(特别是电压和电阻)的校准可以追溯到反映量子物理的固态设备,而不是经典的库仑或安培定律。基于约瑟夫森电压 (JV) 的量子标准
大多数人,包括物理学家,可能都不知道实验室里的电压表或手机里的电池是如何校准的。这两项活动以及许多其他活动都主要依赖于基于国际单位制的电学单位的成功传播。电学单位的标准有着悠久的历史,可以追溯到基础实验——例如安培定律的测试。然而,今天的电学标准正受到基于量子定律和设备的现代工作的挑战,而这些定律和设备在 1960 年国际单位制建立时并不存在。理论上,电学单位都是基于两根载流导线之间的力。实际上,目前的电学单位系统基于两个不方便且具有挑战性的物理实验。电流单位由现代版的安培实验定义,该实验使用一种称为瓦特天平的设备(见图 1)。电容单位由可计算电容器实验定义,在该实验中,一个大型铜圆柱体在真空室中移过其他圆柱体。然而,在实际操作中,大多数电气单位(特别是电压和电阻)的校准可以追溯到反映量子物理的固态设备,而不是经典的库仑或安培定律。基于约瑟夫森电压 (JV) 的量子标准
资源信函是大学物理学家、天文学家和其他科学家的参考书、网站和其他教学辅助工具。每封资源信函都侧重于一个特定主题,旨在帮助教师改进特定物理学领域的课程内容或向非专业人士介绍该领域。资源信函编辑委员会在 AAPT 冬季会议上开会,选择明年将委托撰写资源信函的主题。以下资源信函中的项目标有字母 E,表示初级水平或希望了解该领域知识的人普遍感兴趣的材料,字母 I 表示中级水平或有点专业的材料,字母 A 表示高级或专业材料。没有一封资源信函是详尽无遗的;随着时间的推移,可能会有多个关于给定主题的资源信函。迄今为止发布的所有资源信件的完整列表按领域列出,请访问网站 www.kzoo.edu/ajp/letters.html。欢迎对未来资源信件提出建议,包括具有高教学价值的建议,并应发送给 Roger H. Stuewer 教授,AAPT 资源信件编辑,明尼苏达大学物理与天文学院,116 Church Street SE,明尼阿波利斯,MN 55455;电子邮件:rstuewer@physics.umn.edu
资源信函是大学物理学家、天文学家和其他科学家的参考书、网站和其他教学辅助工具。每封资源信函都侧重于一个特定主题,旨在帮助教师改进特定物理学领域的课程内容或向非专业人士介绍该领域。资源信函编辑委员会在 AAPT 冬季会议上开会,选择明年将委托撰写资源信函的主题。以下资源信函中的项目标有字母 E,表示初级水平或希望了解该领域知识的人普遍感兴趣的材料,字母 I 表示中级水平或有点专业的材料,字母 A 表示高级或专业材料。没有一封资源信函是详尽无遗的;随着时间的推移,可能会有多个关于给定主题的资源信函。迄今为止发布的所有资源信件的完整列表按领域列出,请访问网站 www.kzoo.edu/ajp/letters.html。欢迎对未来资源信件提出建议,包括具有高教学价值的建议,并应发送给 Roger H. Stuewer 教授,AAPT 资源信件编辑,明尼苏达大学物理与天文学院,116 Church Street SE,明尼阿波利斯,MN 55455;电子邮件:rstuewer@physics.umn.edu
nist.gov › publication › get_pdf PDF 量子计量三角形 [4] 需要 ~1 nA 或更多。一个有希望的更大电流方案是在超导状态下操作电荷泵。A.
继 Shor 开发出一种高效数字分解的量子力学算法并得到认可的潜在实际应用 [ 1 ] 之后,量子信息科学领域的活动急剧增加。目前,人们正在许多领域探索通用量子信息处理 (QIP) 的实现可能性,包括凝聚态、原子和光学系统。囚禁原子离子已被证明是一种有用的系统,可用于研究此类装置所需的元素 [ 2 ]。离子之所以具有吸引力,部分原因是基于其内部状态的量子比特也可用于原子钟,并且具有非常长的相干时间,在某些情况下超过 10 分钟 [ 3 , 4 ]。此外,由于相互的库仑排斥力,囚禁离子会自然形成空间上分离的量子比特阵列。通过使用聚焦激光束,可以实现选择性量子比特寻址、相干操作和高保真度量子比特状态读取,以及状态相关激光散射 [ 5 , 6 ]。利用这些工具,已经演示了简单的算法 [ 6 ]。然而,目前的操作保真度明显低于容错所需的保真度,而扩展到大型系统的努力才刚刚开始。解决这些问题将涉及重大的技术挑战,但很简单