雷帕霉素机制靶点信号通路是细胞代谢、生长、增殖和存活的普遍调节剂。雷帕霉素机制靶点的主要细胞活性通过雷帕霉素机制靶点复合物 1 级联,而雷帕霉素是一种由细菌吸水链霉菌产生的大环内酯类化合物,可抑制该复合物 1。编码雷帕霉素机制靶点复合物 1 上游调节剂的基因的致病变异会导致癫痫和神经发育障碍。结节性硬化症是一种由雷帕霉素机制靶点调节剂 TSC1 或 TSC2 突变引起的多系统疾病,其显著的神经系统表现包括癫痫、局灶性皮质发育不良和神经精神疾病。局灶性皮质发育不良 II 型是由雷帕霉素机制靶点通路激活剂 MTOR、AKT3、PIK3CA 和 RHEB 的体细胞脑突变引起的,是耐药性癫痫的主要原因。DEPDC5、NPRL2 和 NPRL3 编码 GTPase 活化蛋白 (GAP) 对 Rags 1 复合物 (GATOR1) 活性的亚基,GATOR1 是雷帕霉素机制靶点复合物 1 的主要氨基酸感应调节剂。GATOR1 基因的种系致病变异会导致非病变性局灶性癫痫和与皮质发育畸形相关的癫痫。总的来说,mTOR 病的特征是雷帕霉素机制靶点通路过度激活和耐药性癫痫。在首次针对基因介导性癫痫的大规模精准医疗试验中,依维莫司(雷帕霉素的合成类似物)可有效降低结节性硬化症患者的癫痫发作频率。雷帕霉素可减少 DEPDC5 相关癫痫和 II 型局灶性皮质发育不良啮齿动物模型中的癫痫发作。本综述概述了 mTOR 病中癫痫管理的个性化医疗方法。我们主张对耐药性癫痫的雷帕霉素通路基因机制靶点进行早期诊断测序,因为致病变异的鉴定可能指向看似无病变的癫痫中的隐匿性发育不良,或可能揭示重要的预后信息,包括 GATOR 病中癫痫猝死风险增加或因躯体脑突变导致的 II 型局灶性皮质发育不良的良好癫痫手术结果。最后,我们讨论了雷帕霉素抑制剂的机制靶点在治疗 GATOR1 相关癫痫和 II 型局灶性皮质发育不良的耐药性癫痫方面的潜在治疗应用。
海报展示(截至 2023 年 9 月 14 日)海报会议 B 10 月 13 日星期五 | 下午 12:30-下午 4:00 第 2 层,展览厅 D B002:FHD-286 在 AML 或 MDS 患者中开展的 1 期研究中的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国马萨诸塞州剑桥。B003:从晚期癌症患者的肿瘤组织和 Tempus 基因组数据库的液体活检中收集的 TSC1 和/或 TSC2 变异的真实世界 (RW) 表征和频率。David J. Kwiatkowski,布莱根妇女医院,美国马萨诸塞州波士顿。B004:NF-κB 和 NRF2 信号之间的分子串扰影响 HPV 相关头颈癌的预后。Aditi Kothari,北卡罗来纳大学,美国北卡罗来纳州教堂山。 B005:分子分析和 ESCAT 分类对患者结果的影响:居里研究所分子肿瘤委员会的经验。Maud Kamal,法国巴黎居里研究所。B006:通过邻近连接试验评估的高 RAS-RAF 结合与 NSCLC 对 KRAS G12C 抑制剂的敏感性有关。Ryoji Kato,美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所。B007:NCI-MATCH 试验 (EAY131) 中肿瘤组织和血浆基因分型之间的一致性。Mohamed A. Gouda,德克萨斯大学 MD 安德森癌症中心,美国德克萨斯州休斯顿。B008:机器学习支持对具有光谱重叠的共定位多重 IHC 信号进行量化。Waleed Tahir,PathAI,美国马萨诸塞州波士顿。 B009:基于面板的同源重组缺陷突变特征与转移性去势抵抗性前列腺癌对 PARP 抑制的反应有关。Daniel Boiarsky,塔夫茨医学中心,美国马萨诸塞州波士顿。B010:使用加性多实例学习模型对 H&E 全幻灯片图像中的基因表达特征进行空间分辨预测。Chintan Parmar,PathAI,美国马萨诸塞州波士顿。B011:GDF-15 是上皮样血管内皮瘤侵袭性的生物标志物,并通过 ATF4 抑制被雷帕霉素下调。Alessia Beretta,意大利米兰国家肿瘤研究所 IRCCS 基金会。 B012:验证 OncoSignature 检测,这是一种针对 ACR-368 的响应预测定量多重免疫荧光检测,用于预测癌症患者对 CHK1/2 抑制剂 ACR-368 的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国马萨诸塞州沃特敦。B013:乳腺癌 Notch 转录组特征的鉴定。Felix Geist,默克集团医疗保健业务,德国达姆施塔特。B014:非小细胞肺癌患者 Nectin-4 蛋白表达的特征。Sean Santos,Bicycle Therapeutics,美国马萨诸塞州剑桥。
海报展示(截至 2023 年 9 月 19 日)海报会议 B 星期五,10 月 13 日 | 下午 12:30-下午 4:00 第 2 层,展览厅 D B002:FHD-286 在 AML 或 MDS 患者中开展的 1 期研究中的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国马萨诸塞州剑桥。B003:从晚期癌症患者的肿瘤组织和 Tempus 基因组数据库的液体活检中收集的 TSC1 和/或 TSC2 变异的真实世界 (RW) 表征和频率。David J. Kwiatkowski,布莱根妇女医院,美国马萨诸塞州波士顿。B004:NF-κB 和 NRF2 信号之间的分子串扰影响 HPV 相关头颈癌的预后。Aditi Kothari,北卡罗来纳大学,美国北卡罗来纳州教堂山。 B005:分子分析和 ESCAT 分类对患者结果的影响:居里研究所分子肿瘤委员会的经验。Maud Kamal,法国巴黎居里研究所。B006:通过邻近连接试验评估的高 RAS-RAF 结合与 NSCLC 对 KRAS G12C 抑制剂的敏感性有关。Ryoji Kato,美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所。B007:NCI-MATCH 试验 (EAY131) 中肿瘤组织和血浆基因分型之间的一致性。Mohamed A. Gouda,德克萨斯大学 MD 安德森癌症中心,美国德克萨斯州休斯顿。B008:机器学习支持对具有光谱重叠的共定位多重 IHC 信号进行量化。Waleed Tahir,PathAI,美国马萨诸塞州波士顿。 B009:基于面板的同源重组缺陷突变特征与转移性去势抵抗性前列腺癌对 PARP 抑制的反应有关。Daniel Boiarsky,塔夫茨医学中心,美国马萨诸塞州波士顿。B010:使用加性多实例学习模型对 H&E 全幻灯片图像中的基因表达特征进行空间分辨预测。Chintan Parmar,PathAI,美国马萨诸塞州波士顿。B011:GDF-15 是上皮样血管内皮瘤侵袭性的生物标志物,并通过 ATF4 抑制被雷帕霉素下调。Alessia Beretta,意大利米兰国家肿瘤研究所 IRCCS 基金会。 B012:验证 OncoSignature 检测,这是一种针对 ACR-368 的响应预测定量多重免疫荧光检测,用于预测癌症患者对 CHK1/2 抑制剂 ACR-368 的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国马萨诸塞州沃特敦。B013:乳腺癌 Notch 转录组特征的鉴定。Felix Geist,默克集团医疗保健业务,德国达姆施塔特。B014:非小细胞肺癌患者 Nectin-4 蛋白表达的特征。Sean Santos,Bicycle Therapeutics,美国马萨诸塞州剑桥。
海报演示文稿(截至9/14/23)10月13日(星期五)海报会议B | 12:30 pm-4:00 PM 2级,展览馆D B002:在AML或MDS受试者中,在1期研究中,FHD-286的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国剑桥,美国。b003:从肿瘤组织和液体活检中收集的TSC1和/或TSC2改变的现实世界(RW)表征和频率是晚期癌症患者的TEMPUS基因组数据库的液体活检。美国马萨诸塞州波士顿的杨百翰和妇女医院的戴维·J·Kwiatkowski。b004:NF-κB和NRF2信号之间的分子串扰会影响与HPV相关的头颈癌的预后。Aditi Kothari,UNC,美国北卡罗来纳州教堂山。b005:分子分析和ESCAT分类对患者结局的影响:库里学院分子肿瘤板的经验。莫德·卡马尔(Maud Kamal),法国巴黎库里学院。b006:通过接近连接测定评估的高RAS-RAF结合与NSCLC中对KRAS G12C抑制剂的敏感性有关。Ryoji Kato,H。LeeMoffitt癌症中心和研究所,佛罗里达州坦帕。 B007:NCI匹配试验中肿瘤组织与血浆基因分型之间的一致性(EAY131)。 Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。 b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。 Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。 Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Ryoji Kato,H。LeeMoffitt癌症中心和研究所,佛罗里达州坦帕。B007:NCI匹配试验中肿瘤组织与血浆基因分型之间的一致性(EAY131)。Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。 b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。 Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。 Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。b009:基于面板的同源重组缺乏症的基于面板的突变特征,并响应转移性cast割的前列腺癌对PARP抑制作用。b010:使用添加性多个实例学习模型在H&E H&E整个幻灯片图像中基因表达特征的空间分辨预测。b011:GDF-15是上皮性血管内皮瘤侵略性的生物标志物,并由Sirolimus通过ATF4抑制而受到调节。Alessia Beretta,Fondazione Irccs Istituto Nazionale dei tumori,意大利米兰。b012:验证Oncosignature Assay是一种ACR-368级的反应预测定量多重多重免疫荧光测定法,以预测对CHK1/2抑制剂ACR-368的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国沃特敦。B013:鉴定乳腺癌的凹痕转录组学特征。Felix Geist,德国达姆施塔特默克KGAA的医疗保健业务。b014:非小细胞肺癌患者中蜜素-4蛋白表达的表征。Sean Santos,自行车治疗学,美国剑桥。
2型糖尿病(T2DM)估计会影响全球超过4亿人[1]。此外,到2050年,糖尿病的发病率预计将增加和影响三分之一的人[2]。考虑其慢性并发症和死亡率,对T2 DM的病理生理学和治疗的研究也在增加。肌动物在肌肉水平上与胰岛素抵抗有关的肌动物一直是糖尿病病理生理学的各种研究的主题[3]。这些肌动物中的一种,三瓜蛋白53(MG53),也称为TRIM72,是一种属于三方基序(Trim)家族的多孔蛋白,在骨骼和心脏肌肉中大量表达[4]。除了其重要的生理作用外,MG53还被证明是各种疾病的重要致病因素[5]。例如,MG53通过参与心脏,骨骼肌和其他组织的细胞膜修复来维持心脏和骨骼肌完整性[6,7]。细胞内MG53的急性升高还具有针对心肌缺血/再灌注损伤的保护作用[8]。尽管已阐明了其作为膜修复蛋白的重要功能[9],但MG53在许多代谢过程中的作用,尤其是在胰岛素信号通路中,这是很困难的。尽管动物模型中临床前研究的一些研究结果表明,MG53上调可能通过在骨骼肌中引起胰岛素抵抗而导致代谢性疾病,例如T2 DM和肥胖[10,11],但也有相反结果的研究。尽管假设MG53升高可能是T2 DM的致病因素[10],但许多研究尚未建立胰岛素抵抗和MG53之间的因果关系[12-14]。因此,MG53已被证明对许多疾病既有益和负面影响。迄今为止,在动物模型中,几乎所有关于MG53与胰岛素敏感性和DM相关的研究。尽管临床前研究矛盾,但已建议MG53是动物模型中糖尿病的一种新型致病因素。观察人类研究中其与糖尿病,糖尿病并发症和血糖控制的关系可能为治疗2型糖尿病及其并发症的新途径开辟了新的途径。在我们的研究中,我们的目的是检查患者组2型DM的患者组诊断与没有代谢综合征和糖尿病的健康对照组之间的血清MG53水平差异,并确定患者组中糖尿病并发症与血糖控制和MG53水平之间的关系。
