介绍了一种用于混合电压的数字双向输入/输出 (I/O) 垫片缓冲器的新电路设计。数字双向 I/O 缓冲器通过将输出阻抗与传输线的 50 欧姆相匹配来避免反射,并通过增加输出阻抗使过冲和下冲低于 300mV。数字双向 I/O 垫片缓冲器提供输入和输出之间的最小延迟以及最小上升和下降时间。所提出的数字双向 I/O 垫片缓冲器是在 Cadence 中使用 TSMC 0.18um CMOS 工艺进行设计、仿真和布局的,线性电阻元件电连接到 I/O 垫片以限制处理的数据 I/O 信号。输出上升时间和下降时间分别为 0.42 ns 和 0.93 ns,负载为 3pF。最终芯片面积仅为 5 um 2
本文旨在详细研究非反相降压-升压转换器的评估和特性。为了改善降压-升压转换器在三种工作模式下的行为,我们提出了一种基于峰值电流控制的架构。使用三模式选择电路和软启动电路,该转换器能够扩大功率转换效率并减少反馈回路的浪涌电流。建议的转换器设计为以可变输出电压运行。此外,我们使用导通电阻低的 LDMOS 晶体管,这适用于 HV 应用。结果表明,与其他架构相比,所提出的降压 - 升压转换器的性能更完美,并且它使用 0.18 µ m CMOS TSMC 技术成功实现,输出电压调节为 12 V,输入电压范围为 4-20 V。在负载电流为 4 A 时,降压、升压和降压-升压三种工作模式的功率转换效率分别为 97.6%、96.3% 和 95.5%。
本文介绍了一种基于电压差分跨导放大器 (VDTA) 的波有源滤波器的高阶电压和电流模式低通或高通滤波器。针对波有源滤波器的基本有源构建模块,提出了波等效变量技术和拓扑模拟以及使用波变量技术的操作实现。将所提出的波等效技术与正确选择端子连接一起应用于波有源滤波器。本文提出,实现波有源滤波器的基本元件是串联电感和并联接地电容。通过使用 SPICE 模拟和 0.18 µm TSMC CMOS 技术参数,实现了最低功耗为 ±0.82 V 的 4 阶低通和高通巴特沃斯滤波器,从而验证了所提出的波有源滤波器。
ISO/IEC标准加密LSI用于侧通道攻击评估(密码LSI)是LSI,其中RSA和块上的密码在ISO/IEC 18033中的“ Part3:Block Ciphers”(信息技术 - 安全技术 - 加密技术 - 加密Algorithms)实施了侧向攻击评估。加密LSI使用TSMC的0.13μmCMOS工艺和160针QFP陶瓷包装。有七个密码,AES,DES,MISTY1,CAMELLIA,SEED,COST和RSA。AES用七个作用实施。因此,LSI上有13个加密电路。LSI的两个版本是为日本和日本以外的其他国家建造的。由于出口控制,在日本以外的其他国家 /地区的LSI中,密码电路的关键长度限制为56位,而RSA则有512位。其余部分是固定的。密码的详细信息如下:
更多。 div>我们想做的事情更少,但影响更大。 div>最相关,创新和变革性的项目。 div>让自己参与CIBER枢纽,增强健康中心,欧洲南方测试轨道以及当前的两个巨大挑战,在微电脑中遇到的挑战,其对大学,公司的影响,并证明IMEC在马拉加植入了马拉加,合并了与TSMC和Eurractice的一系列合作,需要巨大的ecors和Eurtracter的私人资源和私人资源,这是公众的私人时间和私有的项目,这是私人的私有项目,从最广泛的意义上讲。 div>与Eurecat的联盟,与瓦伦西亚的半导体集群,巴塞罗那健康枢纽正在绘制清晰的添加和协作线,以获得创新的竞争力和规模,这是高级社会可持续繁荣的唯一引擎。 div>
为了满足人工智能 (AI) 和高性能计算 (HPC) 等数据密集型应用的需求,需要更紧密的集成以最大限度地减少电气互连延迟和能耗。遗憾的是,随着器件规模缩小,片上互连寄生效应变得越来越重要,因此纳米级 CMOS 技术的传统器件规模缩小正在放缓。因此,人们对 3D 异构集成技术的兴趣日益浓厚,台积电的 SoIC [1] 和 AMD 的 3D V-Cache [2] 技术就是明证。3D 异构集成技术具有高密度互连、带宽和低功耗的潜力 [3],但由于材料和小尺寸,键合技术存在局限性,这可能会带来挑战。例如,μ 凸块已采用回流或热压工艺制造,然而,随着其间距缩小,凸块下金属化 (UBM) 厚度开始成为瓶颈 [4- 5]。
摘要:在本文中,提出了带有快速安全充电的锂离子电池充电器接口(BCI)电路。在充电期间,由于异步控制信号引起的电流尖峰和温度是极大地影响电池性能和寿命的因素。该电路具有以下特征:防止电流尖峰,还包含了永久的电池温度监测块。BCI使用双电流源,并在1.5 a的大电流模式下生成常数电流,进一步减少了充电时间。使用TSMC 180 nm技术在Cadence Virtuoso中设计和模拟了所提出的BCI。控制信号的仿真结果表明,所提出的体系结构能够消除当前的漂移并将电池温度保持在正常工作范围内。关键字:锂离子电池充电器接口,快速和安全的充电,双电流源,trick流,电流模式,大电流模式,恒定电压模式。
摘要 — 存储器编译器是促进数字电路设计过程的必要工具。然而,学术界只有少数可用的。电阻式随机存取存储器 (RRAM) 具有高密度、高速度、非易失性的特点,是未来数字存储器的潜在候选。据作者所知,本文介绍了第一个用于自动存储器生成的开源 RRAM 编译器,包括其外围电路、验证和时序特性。RRAM 编译器使用 Cadence SKILL 编程语言编写,并集成在 Cadence 环境中。布局验证过程在 Siemens Mentor Calibre 工具中进行。编译器使用的技术是 TSMC 180nm。本文分析了编译器生成的大量 M x N RRAM 的新结果,最多 M = 128、N = 64 和字长 B = 16 位,时钟频率等于 12.5 MHz。最终,编译器实现了高达0.024 Mb/mm 2 的密度。