近年来,逻辑器件的量产技术已经发展到 3nm 技术节点[1]。未来,英特尔、三星、台积电将继续利用 2nm 技术节点的新技术,如环栅场效应晶体管 (GAAFET) [2,3]、埋入式电源线 (BPR) [4–8],来优化逻辑器件的功耗、性能、面积和成本 (PPAC)。然而,横向器件的微缩越来越困难,流片成本已令各大设计公司难以承受。同时,垂直器件将成为未来 DRAM 器件中 4F2 单元晶体管的有竞争力的候选者 [9–13]。关于垂直器件的研究报道很多,大致可分为两条路线。“自下而上”路线利用金属纳米粒子诱导催化,实现垂直纳米线沟道的生长 [14,15]。然而该路线存在金属元素问题,如金污染,与标准CMOS工艺不兼容。另外,通过光刻和刻蚀工艺“自上而下”制作垂直晶体管器件的方法已被三星和IBM报道[16,17]。然而该路线也存在一些问题,例如器件栅极长度和沟道厚度难以精确控制,并且该路线中栅极无法与垂直器件的源/漏对齐。为了解决上述问题,提出了基于SiGe沟道的垂直夹层环绕栅极(GAA)场效应晶体管(VSAFET),其在栅极和源/漏之间具有自对准结构[18–21]。最近,垂直C形沟道纳米片
nxp®半导体通过联邦经济和气候保护部(BMWK)的赠款加强了德国在德国的欧洲研发计划,这是第二个欧洲第二个欧洲对微电子和通信技术的重要项目的一部分”(IPCEI ME/CT)。最终的投资决定取决于确认公共资金金额。汉堡,慕尼黑和德累斯顿的NXP团队将专注于用于自动驾驶,沟通和量子后加密术的关键技术,以促进其开发和应用。活动包括四个IPCEI ME/CT工作场中的三个:“ Think”,“ Sense”和“ Communicate”。nxp为技术弹性以及欧洲数字和绿色转型的实施做出了重要贡献。通过与大学和领先的技术公司(例如Rohde&Schwarz and Smartmicro)进行密切合作,NXP可以利用德国和欧洲的广泛专业知识。在此基础上,开发了顶级技术和产品,将进一步增强欧洲的竞争力。“我们对欧盟委员会和BMWK的意图感到非常高兴“我们对关键技术的投资将增强欧洲在微电子方面的技能。下一代微电子学的发展与在未来地区建立长期基础设施和专业知识密切相关。这与NXP的计划合资企业与TSMC的第一家欧洲铸造厂的参与息息相关,并强调了我们对更多创新和欧洲更稳定的供应链的承诺。 ”“ NXP是一家欧洲扎根的公司,拥有强大的德国地点。通过该项目,它对可持续的半导体为对欧洲和德国的更稳定的护理做出了重要贡献。NXP的研发工作扩展了四个IPCEI ME/CT领域中的三个:“ Think”,“ Sense”和“ Communicate”。在“ Think”领域,主要位于慕尼黑,该公司专注于在5纳米中的中央汽车技术开发,该汽车领域的高性能微处理器和
d v a n c e d p a c k a g i n g i s experiencing rapid growth due to the demand for high- performance computing in artificial intelligence (AI) applications and the automotive industry.鉴于对AI系统的需求很高,Foundry Leader TSMC报告说,它的目标是在2025年至2026年之前平衡供求,并希望2025年2025年能够为其在雪花上覆盖的芯片(cowos®®)技术的芯片上每月启动60,000个晶圆剂[1]。近年来,3D技术的进步包括死对,薄薄的晶圆,晶圆片和靠近垫层的架构。这些进步需要新的工艺技术和过程设备才能生产出高收率的3D功能。这些后端设备是在300mm晶片上制造的,所需的低缺陷水平以前仅限于前端过程。因此,新工具集需要具有低赤字才能获得高收益率,同时提供低廉的所有权。对3D的强烈需求已推动了超过2024年耗资50亿美元的高级包装的资本支出,并且随着对AI的需求驱动Advance Advance Advancing Forward的需求,该数字应在2025年继续增长。将芯片堆叠在2.5/3D包装中时,如图1所示,可以采用几种技术来连接设备,包括颠簸,微型颠簸,支柱,通过硅VIA(TSVS)和混合键合。这些可以直接连接到基板(3D)上的模具,或使用插入器(2.5D),例如玻璃,硅,印刷电路板(PCB)或有机。支持过程包括光刻和沉积(等离子体,溅射,电化学)。为创建设备而实施的湿过程,然后将它们连接到3D体系结构中,包括旋转涂料,开发,蚀刻,光线器,临时粘结材料去除和清洁。
1 IBM 9477 4% 2 三星电子 8735 9% 3 佳能 4102 15% 4 英特尔 3680 8% 5 微软 3144 32% 6 通用电气 3110 19% 7 华为 2938 33% 8 联合技术公司 2847 31% 9 LG 电子 2810 13% 10 丰田 2705 6% 11 索尼 2675 24% 12 Alphabet 2621 0% 13 福特 2519 17% 14 苹果 2512 15% 15 亚马逊 2504 18% 16 戴尔 2482 18% 17 高通 2376 0% 18 台积电 2352 -6% 19 京东方 2190 33% 20松下 2033 8% 21 西门子 1684 18% 22 爱立信 1613 17% 23 现代 1561 1% 24 日立 1546 18% 25 东芝 1495 -11% 26 强生 1474 44% 27 AT&T 1455 14% 28 美敦力 1446 10% 29 波音 1433 14% 30 通用 1404 17% 31 富士 1375 11% 32 精工爱普生 1346 5% 33 三菱电机 1333 12% 34 Facebook 1317 78% 35 霍尼韦尔 1295 13% 36 富士通 1282 -1% 37 美光1276 37% 38 罗伯特·博世 1272 -2% 39 电装 1218 5% 40 荷兰皇家飞利浦公司 1194 -10% 41 哈里伯顿 1112 25% 42 本田 1104 15% 43 京瓷 1085 2% 44 思科 1049 21% 45 NEC 1011 22% 46 理光 994 -6% 47 惠普公司 959 31% 48 村田制作所 933 25% 49 诺基亚 905 1% 50 德州仪器 902 13%
• 基本 FEOL 可靠性:栅极电介质中缺陷的产生会导致电介质击穿和器件性能下降 - Kenji Okada,TowerJazz 松下半导体 • 复合半导体可靠性 101 - Bill Roesch,Qorvo • 互连可靠性基础知识 - Zsolt Tokei,IMEC • VLSI 设计方法和可靠性设计验证 - Michael Zaslavsky 和 Tim Turner,可靠性模拟组 • 电迁移 101 - Cathy Christiansen,Global Foundries • NAND 闪存可靠性 - Hanmant Belgal 和 Ivan Kalastirsky,英特尔 • 芯片封装相互作用 (CPI) 及其对可靠性的影响 - CS Premachandran,Global Foundries • 故障分析的挑战 - 汽车和超越摩尔定律 - Ulrike Ganesh,博世 • 1.NBTI 在半导体领域的最新进展HKMG p-MOSFET 和 2。现代 FINFET、ETSOI 和全栅极 III-V 晶体管中自热的新兴挑战:从晶体管到平板电脑的视角 - Souvik Mahapatra(孟买印度理工学院)和 Muhammad Ashraf Alam(普渡大学) • 汽车转型 - 从应用到半导体技术的成本、上市时间、可靠性和安全性驱动的设计优化 - Andreas Aal,大众汽车公司 • AlGaN /GaN 功率器件可靠性 - Peter Moens,安森美半导体 • 可靠性工程的系统遥测 - Rob Kwasnick,英特尔 • 高级 MOL 和 BEOL 可靠性 - Shou Chung Lee,台积电 • 汽车功能安全简介 - 历史、趋势和与可靠性的关系 - Karl Greb,NVIDIA • 相变存储器:从基础技术到系统方面和新应用 - Haris Pozidis,IBM • 系统可靠性 - Geny Gao,博士 • 先进封装和 3D 可靠性 - C. Raman Kothandaraman,IBM • 兼顾基于知识和基于标准的资格 - Bob Knoell,汽车电子委员会和 NXP • 自旋转矩 MRAM - Daniel C. Worledge,IBM • 现场容错、自我修复、检测和恢复技术的考虑因素 - Arijit Biswas,英特尔
• 基本 FEOL 可靠性:栅极电介质中缺陷的产生会导致电介质击穿和器件性能下降 - Kenji Okada,TowerJazz 松下半导体 • 复合半导体可靠性 101 - Bill Roesch,Qorvo • 互连可靠性基础知识 - Zsolt Tokei,IMEC • VLSI 设计方法和可靠性设计验证 - Michael Zaslavsky 和 Tim Turner,可靠性模拟组 • 电迁移 101 - Cathy Christiansen,Global Foundries • NAND 闪存可靠性 - Hanmant Belgal 和 Ivan Kalastirsky,英特尔 • 芯片封装相互作用 (CPI) 及其对可靠性的影响 - CS Premachandran,Global Foundries • 故障分析的挑战 - 汽车和超越摩尔定律 - Ulrike Ganesh,博世 • 1. HKMG p-MOSFET 中 NBTI 的最新进展以及 2.现代 FINFET、ETSOI 和全栅极环绕 III-V 晶体管中自热的新挑战:从晶体管到平板电脑的视角 - Souvik Mahapatra(印度理工学院,孟买)和 Muhammad Ashraf Alam(普渡大学)• 汽车转型 - 从应用到半导体技术的成本、上市时间、可靠性和安全性驱动的设计优化 - Andreas Aal,大众汽车集团 • AlGaN/GaN 功率器件可靠性 - Peter Moens,安森美半导体 • 可靠性工程的系统遥测 - Rob Kwasnick,英特尔 • 高级 MOL 和 BEOL 可靠性 - Shou Chung Lee,台积电 • 汽车功能安全简介 - 历史、趋势和与可靠性的关系 - Karl Greb,NVIDIA • 相变存储器:从基础技术到系统方面和新应用 - Haris Pozidis,IBM • 系统可靠性 - Geny Gao,博士 • 先进封装和 3D 可靠性 - C. Raman Kothandaraman,IBM • 兼顾基于知识和基于标准的资格 - Bob Knoell,汽车电子委员会和 NXP • 自旋转矩 MRAM - Daniel C. Worledge,IBM • 现场容错、自我修复、检测和恢复技术的考虑因素 - Arijit Biswas,英特尔
计划委员会:英特尔公司(美国)的Frank E. Abboud; UWE F.W.Behringer,UBC微电子学(德国); Ingo Bork,西门子Eda(美国); Brian Cha,Entegris,Inc。(韩国,共和国); Sandeep Chalamalasetty,Micron Technology,Inc。(美国);三星电子公司Jin Choi(韩国,共和国); Aki Fujimura,D2S,Inc。(美国); Emily E. Gallagher,IMEC(比利时); lasertec USA Inc. Arosha W. Goonesekera(美国); Naoya Hayashi,Dai Nippon Printing Co.,Ltd。(日本); Henry H. Kamberian,Photronics,Inc。(美国); Bryan S. Kasprowicz,美国Hoya Corp.(美国); Eung Gook Kim,E-Sol,Inc。(韩国,共和国); Romain Lallement,IBM Thomas J. Watson Research Ctr。(美国);英特尔公司(美国)Ted Liang; Nihar Mohanty,Meta(美国);肯特·H·纳川(Kent H. Dong-Seok Nam,ASML(美国);高海·奥努(Takahiro Onoue),霍亚公司(Japan)(日本); Danping Peng,TSMC北美(美国); Jed H. Rankin,IBM Corp.(美国);道格拉斯·J·雷斯尼克(Douglas J. Resnick),佳能纳米技术公司(美国); Carl Zeiss Sms Ltd.(以色列)的Thomas Franz Karl Scheruebl; Ray Shi,KLA Corp.(美国); Jaesik Son,SK Hynix System Ic Inc.(韩国,共和国);西门子Eda(美国)的Yuyang Sun; lasertec U.S.A.,Inc。Zweigniederlassung Deutschland(德国)Anna Tchikoulaeva(德国);克莱尔·范·拉尔(Claire Van Lare),荷兰ASML B.V.(荷兰); Yongan Xu,Applied Materials,Inc。(美国); Yamamoto Kei,Fujifilm Corp.(日本); Seung-Hune Yang,三星电子有限公司(韩国,共和国); Nuflare Technology,Inc。(日本)舒斯助Yoshitake; Bo Zhao,Meta(美国); Larry S. Zurbrick,Keysight Technologies,Inc。(美国)
Oppstar 主要提供集成电路 (IC) 设计服务,涵盖前端设计、后端设计和根据客户规格提供的完整交钥匙解决方案。该集团主要使用 20nm 至 3nm 的先进工艺节点技术设计专用集成电路 (ASIC)、片上系统 (SoC)、中央处理器 (CPU) 和现场可编程门阵列 (FPGA),用于电信、汽车、工业和消费电子等各个行业。IC 设计部门在 2022 年贡献了其年收入的 99% 以上。此外,它还提供其他相关服务,例如硅后验证服务、培训和咨询服务,占其总收入的不到 1%。Oppstar 在槟城、吉隆坡和上海租用办公室运营,客户来自多个国家(主要是中国),其客户主要包括集成设备制造商、无晶圆厂公司、轻晶圆厂公司、电子系统提供商和其他 IC 设计公司。它已完成特定于代工厂的 IC 设计项目,因为每个代工厂工艺都有自己的一套设计规则。它设计的一些 IC 由世界领先的代工厂制造,例如台积电、三星半导体、英特尔和 Global Foundries Inc. 2022 年,Oppstar 与 Sophic Automation 签订了战略合作伙伴协议,以利用 Sophic Automation 的工程资源和客户群进一步加强其在硅后验证服务方面的产品。由于其业务性质依赖于熟练的人员,其劳动力成本占总销售成本的 90% 以上,其目前 217 名设计工程师的利用率在 FPE2022 达到 85.17%。作为确保未来设计工程师劳动力的努力的一部分,该集团目前与 5 所高等院校合作,制定了一个结构化的计划,通过研发、行业讲座、现场培训、训练营、实习等活动培养知识型员工并提供就业机会。 Oppstar 的订单价值约为 3429 万令吉,主要包括交钥匙设计服务,预计将在未来 12 个月内确认。
推动新医疗创新经济的总体叙述概要由大凤凰城经济委员会 (GPEC) 领导的由 18 个成员组成的“新医疗创新经济 (NHIE)”联盟将实施六个组成项目,这些项目构成了包容性端到端医疗创新生态系统的基础,以实现跨地域和广泛社会、人口和经济群体的财富创造机会。新兴医疗技术集群:NHIE 提案侧重于将新兴医疗技术集群发展为大凤凰城的主要经济引擎。远程医疗、远程监控和其他数字技术使人们能够从医院外到家庭和社区环境中获得医疗服务。该联盟将以该地区的医疗保健行业和信息技术、医疗器械制造和半导体行业的技术能力为基础。2021 年,这些行业的综合实力占区域经济的 25% 和就业岗位的 30%(Emsi)。 EDA 对 NHIE 提案的投资为该地区提供了一个独特的机会,使其能够利用未来五到十年内计划中的超过 40 亿美元的私人投资,用于凤凰城生物医学园区、梅奥诊所扩建和 Discovery Oasis 生物技术走廊,以及台积电、英特尔和供应链公司最近在半导体和电子行业的投资。在此基础上,NHIE 联盟提出了一系列战略性经济发展项目,以创造高质量的就业机会并促进健康和经济公平。挑战:大凤凰城的人口为 480 万,预计到 2030 年将增加到 570 万。人口增长推动了对可扩展且可访问的医疗保健技术解决方案的需求,以满足需求,特别是对于居住在城市以外的十分之一的区域居民和居住在贫困社区(贫困率为 25% 或更高的人口普查区)的四分之一的居民。到 2050 年,大凤凰城将转变为人口多数为少数族裔的地区,自 2010 年以来 65 岁及以上人口增长 48%,并且三分之一的人口符合医疗补助资格,这些都需要采取不同的方法来满足医疗保健需求和解决经济不平等问题。愿景:NHIE 联盟的愿景是加强医疗保健和技术公司、教育和培训提供商、企业家和投资者之间的联系,以发展一个公平、有竞争力和高效的医疗保健技术集群。该集群将使大凤凰城成为新医疗保健创新经济中的国家和全球中心。该联盟的使命是激活跨部门合作,为新技术的出现、企业和就业的增长、新的私人投资以及维持公平增长创造条件。
这是带有会话号的公认论文列表。thetles尚未对HTML进行编辑。这将在发布完整程序之前得到照顾。