摘要 — 欧洲航天工业已经制定了通用卫星开发指南,称为 SAVOIR(空间航空电子开放接口架构)。虽然目前的卫星机载网络实施符合此标准,但它们的发展机会却非常有限。新任务和新客户对机载性能的要求总是更高,这导致人们得出结论,卫星嵌入式网络必须升级。时间敏感网络(一种能够支持实时和高带宽流量的 IEEE 以太网技术)带来了一个机会。本文的目的是通过定性研究讨论 TSN 协议如何帮助集成新一代卫星的服务质量。索引术语 — 时间敏感网络 (TSN)、嵌入式网络、卫星、SAVOIR-OSRA、以太网
表示网络中穿越桥接器的唯一数据流的数量。每个唯一数据流都需要桥接器提供三种功能:流识别、流监管和流整形。这些功能满足了整体航空航天要求,即桥接器能够保持唯一数据流之间的隔离,并为每个数据流提供有保障的服务质量
在公共和私人研究之间建立联系,以便: 连接两个世界,促进研究成果在行业内的转移和实施。 利用基础研究资源,造福技术研究。
为了支持航空航天和嵌入式系统领域的公司和创新项目,B612 提出了生态系统核心的加速服务,并得到了图卢兹大都会和航空谷的支持
现代工业网络运输Best-E FF Ort和实时Tra ffi c。 IEEE TSN任务组引入了时间敏感网络(TSN),以增强以太网,以提供实时TRA FFI c的高质量服务(QOS)。在TSN网络中,应用程序在传输数据之前向网络发出了QoS的要求。网络然后分配资源以满足这些要求。但是,TSN-Unaware应用程序既不能执行此注册过程,也不能从TSN的QoS福利中获利。本文的贡献是双重的。首先,我们引入了一种新颖的网络体系结构,其中附加设备自动地向网络向网络的QoS要求发出了QoS的要求。第二,我们提出了一种处理方法,以检测网络中的实时流并为TSN流信号提取必要的信息。它利用深层的神经网络(DRNN)来检测周期性的tra ffi c,提取准确的tra ffi c描述,并使用tra ffi c分类来确定源应用。因此,我们的建议允许TSN-Unaware申请从TSNS QoS保证中受益。我们的评估强调了所提出的体系结构和处理方法的e ff。
• 符合 IEEE802.3bp 1000BASE-T1 标准 • 符合 OA TC10 标准,<20μA 睡眠电流 – 本地和远程唤醒以及唤醒转发 • 高级 TSN – IEEE 1588v2/802.1AS 时间同步 – 带集成相位校正的硬件时间戳 – 高精度 1pps 信号 (±15ns) • 音频时钟 – AVB IEEE 1722 媒体时钟生成功能 – 相位同步挂钟输出:1KHz 至 50MHz – I2S 和 TDM8 SCLK/FSYNC/MCLK 时钟生成 • 符合开放联盟 TC12 互操作性和 EMC 标准 – 符合 OA EMC 标准 – 符合 SAE J2962-3 EMC 标准 • MDI 引脚上的集成 LPF • MAC 接口:MII、RMII、RGMII 和 SGMII • 支持的 I/O 电压:3.3V、2.5V 和 1.8V • 引脚兼容TI 的 100BASE-T1 PHY 和 1000BASE-T1 PHY – 适用于 100BASE-T1 和 1000BASE-T1 的单板设计,需要更改 BOM • 诊断工具包 – 温度、电压、ESD 监控器 – 数据吞吐量计算器:内置 MAC 数据包生成器、计数器和错误检查器 – 信号质量指示器 – 基于 TDR 的开路和短路电缆故障检测 – 用于电缆性能下降监控的 CQI – 环回模式 • 符合 AEC-Q100 标准 – IEC61000-4-2 ESD:±8kV 接触放电
我们的悉尼团队建议通过安排方案来收购ASX上市的Elixinol Wellness Limited(Elixinol)作为投标人的角色,与收购ASX上市的可持续性营养集团有限公司(TSN)有关,以及与Elixinol一起提供的单独的SECORTIENT SECORTIONS。Elixinol是全球大麻行业的参与者,销售大麻和其他植物衍生的营养,化妆品和食品。TSN是一家垂直综合的业务,生产,制造和分发一系列可持续和植物性的营养品牌,包括大麻产品。
简介:未来的火星任务,无论是机器人任务还是载人任务,都将依靠具有增强自主性的探测车来应对火星探索日益复杂的问题。尽管取得了进展,但火星探测车任务的运营管理在很大程度上依赖于持续的人为干预。因此,集成自主机动能力对于减轻地面控制中心的运营负担至关重要。随着探测车能力的进步,包括增强的传感和处理能力,机载实时网络变得至关重要。事实上,探索火星提出了一项复杂的技术挑战,需要管理太空探测车内的众多系统和子系统;这些组件之间的通信对于确保任务成功至关重要。在这种情况下,采用实时网络变得至关重要,以确保关键数据的传输和接收没有延迟或中断。特别是,当前的机载网络技术将无法满足这种日益增长的需求。集成时间敏感网络 (TSN) 架构对于支持自主性和确保可靠的实时数据传输至关重要。这种必要性促使航天器行业考虑使用 TSN 解决方案升级运载火箭和卫星上的机载网络 [1]- [4]。火星探测器的网络也必须遵循同样的趋势,因为 TSN 技术为解决这些任务中与通信相关的挑战提供了强大的解决方案。
摘要 - 围绕行业5.0的讨论强调了完全相互联系的工业生态系统,将AI和数字双胞胎整合在一起。在这种环境中,工业设备必须与人类工人无缝合作,需要低延迟,高数据速率连接才能实时监控。为了满足这一需求,已经开发了时间敏感的网络(TSN)标准。但是,在动态工业网络中配置TSN会带来挑战。IEEE 802.1Q标准提供了诸如时光塑形器(TAS)之类的机制,以在正确配置时达到确定性延迟。在本文中,我们可以在动态网络中处理TA的配置,例如重新配置生产线以适合生产目标或在生产线中部署新应用程序,从而在网络中添加了新的流。我们的解决方案采用了深入的增强学习(DRL),通过模拟进行了训练和评估,从而适应不断变化的网络条件和动态生产线重新配置。
SAMRH71 是一款抗辐射 MCU,提供空间连接接口和超过 200 DMIPS 的高处理能力的最佳组合。SAMRH71 专为空间应用中的高辐射性能、极端温度和高可靠性而设计。它利用强大的 Arm ® Cortex ®-M7 内核以及高带宽通信接口,例如 SpaceWire、MIL-STD-1553、CAN FD 和具有 TSN 功能的以太网。