摘要 — 表面电极离子阱因其对捕获离子的卓越可控性而在实际量子计算中具有极高的前景。借助先进的微加工技术,硅已被开发为离子阱衬底,用于精细的表面电极设计以及单片电光元件集成。然而,硅的高射频损耗阻碍了大规模实施的可能性。在这项工作中,我们展示了一种硅通孔 (TSV) 集成离子阱,由于消除了表面上的引线键合焊盘和外形尺寸的小型化,该离子阱具有较低的射频损耗。我们还制造了两种类型的传统引线键合 (WB) 阱,它们有或没有接地屏蔽层。就片上 S 参数、封装后谐振和由此产生的功率损耗而言,对不同离子阱的射频性能进行了测试和比较。结果表明,与 WB 阱相比,TSV 阱具有较低的 S21(50 MHz 时约为 0.2 dB)、较高的 Q 因子(约为 22)和较低的功率损耗(0.26 W)。此外,还采用 3D 有限元建模对不同阱的电场进行可视化和 RF 损耗分析。从建模中提取的结果与测量结果显示出良好的一致性。除了各种 RF 测试外,还介绍了不同离子阱的设计、制造和离子捕获操作。这项工作提供了对离子捕获装置 RF 损耗的见解,并为减少 RF 损耗提供了一种新的解决方案。
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性
使用在线拉曼光谱法开发了通过 - 硅vias(TSV)阵列内的应力演化的全面图片。一组具有不同TSV几何形状和金属种子衬里厚度的晶圆暴露于各种退火条件。监测VIA之间的Si-Si声子模式移动,通过几何形状和加工条件对Si底物中应力的影响是无损的。紧密靠近TSV的压缩应力。然而,对于带有小TSV音高的阵列,底物在VIA之间的空间中并没有完全放松,而是在阵列内积聚拉伸应力。这种病间应力随着TSV螺距的降低而增加,积聚向阵列的中心,并在很大程度上取决于退火条件。阵列中的高分辨率拉曼图显示了TSV阵列中应力分布的全部图片。通过使用不同的激发波长,探测了Si晶片中应力的变化。这些发现证明了对过程依赖性压力信息的在线访问的价值。此知识有助于定义设计基本规则,以获得最高设备性能或最大化晶体上可用区域的逻辑设备。
**已完成的合同联系人:Tamikah DuBose McWilliams 合同专家 256-895-1360 Tamikah.McWilliams@usace.army.mil Felicia Stewart 合同专家 256-895-1321 Felicia.Stewart@usace.army.mil
• 2.5D IC 与 2D IC 的区别在于,2.5D IC 在芯片和基板之间添加了一个硅中介层,中介层上表面和下表面的金属化层之间通过 TSV 连接。[10] 这样,通过将芯片并排放置,就可以实现不同芯片之间的互连。例如:存储器芯片与逻辑芯片。
随着现代通信技术的发展,对交流组件的微型化和轻量级的需求正在增加[1],因此对微波无源装置小型化的研究具有重要意义。作为RF微波系统中的关键元素,分支线耦合器用于配电和组合[2-4]。在微波带的较低频率下,常规分支线耦合器的大小太大而无法实际使用[5]。,例如在S波段中,具有较大尺寸的传统分支线耦合器的缺点更为突出,而S波段则广泛用于通信卫星,天气雷达和其他田野,尺寸要求更为严格。通过使用集团组件的方法可以显着降低尺寸,低温联合陶瓷(LTCC)和集成的被动装置(IPD)技术,最近引入了以实现
片上电感是射频集成电路 (RFIC) 中的重要无源器件 [1]。利用硅通孔 (TSV) 的 3-D 封装技术开创了片上电感、电容、滤波器等无源元件的实现 [2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19]。与传统的 2-D 电感相比,基于 TSV 的 3-D 电感具有电感密度高、体积小的优势 [20、21、22、23、24]。一些研究主要针对基于 TSV 的电感的直流电感建模。基于 3-D 全波仿真获得的 Y 参数,提出了经验近似表达式 [25, 26]。但它很耗时并且在物理上不严谨。[27] 提出了一种基于 TSV 的螺旋电感直流电感的解析模型,该模型据称很简单,但用该模型确定电感是一项非常困难的任务,因为它需要至少 4 N + 2 C 2 N + 1 次计算才能获得 N 匝电感的电感,其中 C 2 N 表示组合,它取决于电感匝数。此外,据我们所知,尚无关于基于 TSV 的螺旋电感的交流电感和品质因数的解析模型的报道。在本文中,提出了基于 TSV 的螺旋电感的直流电感公式。基于该公式及等效电路模型,建立了TSV基螺旋电感的交流电感及品质因数的分析模型
第六条声明 亨茨维尔地区大都会规划组织 (MPO) 致力于遵守 1964 年《民权法案》第六条、1987 年《民权恢复法案》以及所有相关规则和法规。亨茨维尔地区 MPO 保证,任何个人或群体都不会因种族、肤色、年龄、残疾、国籍、性别或收入状况而被排除在亨茨维尔地区 MPO 管理的所有计划、服务或活动之外,或被剥夺其福利,或受到其他歧视,无论这些计划和活动是否由联邦政府资助。亨茨维尔地区 MPO 的政策还包括确保其所有计划、政策和其他活动不会对少数族裔和低收入人群产生不成比例的不利影响。此外,亨茨维尔地区 MPO 将为英语水平有限的人提供有意义的服务。
摘要 针对第六代(6G)移动通信应用,提出了三种新型五阶超紧凑发夹带通滤波器。发夹单元的臂采用三维集成技术(TSV)实现,部分发夹单元由四个臂组成。本文介绍了这三种滤波器的设计方法,并通过基于有限元法的工业级仿真器HFSS验证了滤波特性。结果表明:所设计的三个滤波器的中心频率分别为0.405 THz、0.3915 THz、0.3955 THz,带宽分别为0.1 THz、0.077 THz、0.063 THz,插入损耗为2.0 dB,回波损耗分别为12.4 dB、13.4 dB、14 dB。所设计的三个滤波器的尺寸均为0.284×0.0325 mm2(1.29×0.148λg2)。关键词:第六代(6G)移动通信、太赫兹(THz)频段、发夹带通滤波器、硅通孔(TSV)分类:电子器件、电路和模块(硅、化合物半导体、有机和新材料)