组件 #1:硬质合金基体从第一家将微颗粒硬质合金引入大众市场圆形工具行业的公司到现在,Tool Alliance ® 一直在为要求苛刻的应用开发新的粉末和等级组合。我们认识到,我们的材料是第一个重要特性。通过与有限数量的钨粉和硬质合金材料供应商建立合作伙伴关系,我们能够保证我们的客户收到的精密公差工具仅由全球最纯净、最精细的等级磨制而成。以下 Ultra-Carb ® 1 和 Ultra-Grain ® 1 的照片分别展示了我们通常称为硬质合金的化合物的复杂性。通过 SEM(扫描电子显微镜)放大 10,000 倍拍摄,可见的颗粒是钨,而钴粘合剂则呈现为深色阴影。Ultra-Carb 照片中出现的最大钨颗粒尺寸小于 1 微米。请注意,这些等级是两个样本,代表了我们在整个产品线中使用的十几种不同的基材,每种基材都有特定的应用领域。与其他行业参与者相比,您会发现 Tool Alliance 提供的碳化物晶粒结构月度和年度一致性最好。
沉积物的显微照片;请注意,较大的碳化钨颗粒位于复合碳化物和块状耐火碳化物的基体中。焊接说明要硬化的区域应无锈蚀、氧化皮、油脂或其他污垢。根据母材合金和要硬化的区域的大小,建议的预热温度应在 100-250°C 之间。强烈建议将电压和焊接电流保持在尽可能低的设置,以保持碳化钨颗粒的完整性。在焊接过程中,应激活电弧,使焊接金属沉积在粗滴中,而不是以平滑的流动方式运行(表明参数设置过高)。焊后控制冷却非常有益。沉积物不可加工。研磨至所需的表面光洁度。
LeoFresnel提供15°至60°的束角,无需颜色纹理,无线和有线DMX控制,并且输出与传统的1000 W Tungsten Light相当,用于电影,工作室和事件。带有内置电池可在250 W处提供2小时的最大亮度操作,可以使用RuntimeExtender进行扩展。附件包括用于连接轭架的菲涅尔透镜,barndoor和航空公司轨道,可轻松安装的兔子折扣适配器以及其他Astera配件,例如TrackHandle,Trackpin和Standard TevMP适配器。
通过将所有混色技术的 3200K 光谱曲线与实际钨源的曲线重叠并进行比较,显然,尽可能多地填充光谱可以更真实地呈现光谱内的色调。
1 化学系,APCMahalaxmi 学院,Thoothukudi,泰米尔纳德邦,隶属于 Manonmaniam Sundaranar 大学,Tirunelveli,泰米尔纳德邦,印度 2 化学系,VOChidambaram 学院,Thoothukudi,泰米尔纳德邦,印度 *通讯作者:kalaponpriya@gmail.com 摘要 三氧化钨 (WO 3 ) 已被证明具有可见光光活性,并提供了一种克服光催化剂(如二氧化钛)对紫外光依赖性的方法。在本研究中,通过化学共沉淀法成功制备了镉离子掺杂的 WO 3 纳米粒子。以氯化镉和钨酸钠溶液为前体。通过 UV、XRD、FESEM、EDAX 和 PL 光谱技术表征了 Cd 离子掺杂的 WO 3 纳米粒子的晶体结构和光学特性。 Cd 离子掺杂的 WO 3 纳米粒子的形貌研究揭示了晶体状形貌。能量色散分析证实了 Cd 离子在掺杂的 WO 3 晶格中的存在。从 WO 3 的紫外-可见光谱来看,Cd 离子掺杂的 WO 3 纳米粒子在 310 nm 和 320 nm 处表现出吸收。XRD 光谱显示衍射峰对应于结晶氧化钨的晶面。使用 Debye scherrer 公式,还计算了未掺杂和 Cd 离子掺杂的氧化钨纳米粒子的尺寸。通过 PL 光谱研究了制备的纳米粒子的光学特性。
对基于铝合金 6262 的混合金属基复合材料在干滑动条件下进行了摩擦学研究,该复合材料加入了不同重量百分比的碳化钨 (WC) 和二硫化钼 (MoS 2)。具体来说,碳化钨的加入量为 3%、6% 和 9%,而二硫化钼的加入量为 2%、4% 和 6%。这些混合复合材料的制造采用搅拌铸造技术。实验设计遵循 L27 正交阵列,并采用田口优化来确定输入参数的最佳组合。采用正交阵列、信噪比和方差分析来研究开发的复合材料的最佳测试参数。最佳配方可产生最小的磨损率和摩擦系数,即 9% WC、6% MoS2、负载为 10N、滑动速度为 1 m/s 以及滑动距离为 400 m。使用扫描电子显微镜 (SEM) 对 Al6262/WC/MoS 2 混合复合材料进行表征。
摘要:缺陷和微观结构对TI-6AL-4V焊缝的机械性能的影响;等离子体电弧焊接;电子梁焊接;在目前的工作中研究了激光束焊接。评估了微硬度的不同焊接类型的机械性能;产量强度;最终的拉伸强度;延性以及在室温和升高温度下(200℃和250℃)的疲劳。的晶体学对不同焊接类型的微观结构进行表征,并进行了分裂研究以将缺陷对疲劳性能的影响联系起来。电子和激光束焊接比钨惰性气体焊接和等离子体弧焊接产生的微结构,更高的拉伸延展性和更好的疲劳性能。大毛孔和靠近标本表面的孔最不利于疲劳寿命。