成功识别和靶向致癌基因融合是癌症治疗的重大突破。在这里,我们研究了使用靶向 RNA 测序面板识别胃肠道和罕见癌症中的融合基因的治疗意义和可行性。从 2017 年 2 月到 12 月,三星医疗中心 (NCT #02593578) 招募了患有胃肠道、肝胆、妇科、肉瘤或罕见癌症的患者参加临床测序项目。患者的中位年龄为 58 岁(范围为 31-81 岁),男女比例为 1.3:1。共有 118 名患者通过了基于下一代测序 (NGS) 的靶向测序检测的质量控制流程。进行了基于 NGS 的靶向测序检测,以检测 36-53 个与癌症有关的基因中的基因融合。本研究纳入的癌症类型包括:28 例结肠直肠癌、27 例胆道癌、25 例胃癌、18 例软组织肉瘤、9 例胰腺癌、6 例卵巢癌和 9 例其他罕见癌症。25 例样本(21.2%)检测到强融合。我们发现 5.9% (7/118) 的患者具有已知可靶向的融合基因,包括 NTRK1 ( n = 3)、FGFR ( n = 3) 和 RET ( n = 1),10.2% (12/118) 的患者具有潜在可靶向的融合基因,包括 RAF1 ( n = 4)、BRAF ( n = 2)、ALK ( n = 2)、ROS1 ( n = 1)、EGFR ( n = 1) 和 CLDN18 ( n = 2)。因此,我们通过对胃肠道/罕见癌症的 RNA 面板测序成功识别出相当一部分携带融合基因的患者。可靶向和潜在可靶向的融合基因包括 NTRK1 、 RET 、 FGFR3 、 FGFR2 、 BRAF 、 RAF1 、 ALK 、 ROS1 和 CLDN18 。通过 RNA 面板测序检测融合基因可能对难治性胃肠道/罕见癌症患者有益。
由于传统能源资源的枯竭、温室气体排放、气候变化等,基于可再生能源 (RER) 的发电正成为当前和未来电力行业的主要来源。主要的 RER,包括太阳能、风能和小型水电,可在智能电网环境中提供可靠且可持续的解决方案。基于太阳能和风能的发电更为普遍,但性质各异,甚至无法非常有效地预测。因此,有必要整合两个或更多 RER 并开发混合能源系统 (HES)。HES 提供经济高效且可靠的电源,同时减少和/或几乎可以忽略不计的温室气体排放。出于经济和电力可靠性方面的考虑,组件的最佳尺寸对于开发最佳 HES 是必不可少的。近年来,元启发式进化算法已被广泛用于 HES 的最佳尺寸。哈里斯霍克优化器 (HHO) 是一种最近设计的元启发式搜索方法,能够发现全局最小值和最大值。然而,由于其开发能力较弱,基本 HHO 算法的局部搜索相当慢,收敛速度也较慢。因此,为了加速 HHO 的开发阶段,本研究开发了一种新方法,即以随机探索性搜索为中心的哈里斯霍克优化器 (hHHO-ES),用于优化 HES 的大小。针对各种众所周知的基准函数(包括单峰、多峰和固定维度),验证了建议的方法并将其与现有的优化方法进行了比较。随后,该方法被用于开发 HES,它将能够为电网供应稀缺的偏远地区提供电力。在一系列约束(例如系统组件的界限和可靠性)下,使用净现值 (NPC) 作为主要函数来制定目标函数。将获得的结果与和声搜索(HS)和粒子群优化(PSO)的结果进行了比较,发现其效果更佳。
摘要目的/简介:Galectin-3(GAL3)有助于胰岛素抵抗,炎症和肥胖,这是2型糖尿病患者中轻度认知障碍(MCI)的三个危险因素。材料和方法:通过蒙特利尔认知评估方法评估了总共134例住院的2型糖尿病患者,并分为65个MCI和69个对照组。变量水平均与COG固定功能相关研究。结果:与非MCI 2型型糖尿病控制相比,在MCI 2型糖尿病组中发现了血清GAL3和较低水平的血浆A B 42(所有P <0.05)。部分相关分析表明,GAL3与MMSE评分(r = -0.51,p <0.01)和蒙特利的认知评估评分(r = -0.47,p <0.001)在调整后,对糖化血液凝血蛋白,血液拒蛋白,同性恋抑制剂的胰岛素抗性和胰岛素抗性的效果与胰岛素抑制作用和所有类型2的效果在所有类型的效果中均具有2次胰岛素的影响。 MCI 2型糖尿病组在与MCI地层进行了进一步分析后。一个简单的逻辑回归模型表明,与协变量的性别,年龄,体重指数,糖化性血红蛋白,同性恋抑制剂模型评估胰岛素抵抗和抗糖尿病药物后,GAL3和B 42与MCI 2型糖尿病患者显着相关。在高脂饮食/链蛋白酶糖尿病大鼠中,血清和脑gal3水平显着升高,这与学习和记忆能力的损害相关。gal3抑制剂改性果胶果胶降低了糖尿病大鼠的血清和脑gal3水平,并伴有学习和记忆障碍的改善。结论:GAL3可能与2型糖尿病的认知障碍有关,血清GAL3水平可能是2型糖尿病患者MCI的新危险因素。
疫苗接种的错失机会(MOV)包括有资格接受疫苗接种(未接种疫苗,接种疫苗接种或不及时接种疫苗的儿童)的任何接触,并且没有疫苗接种的禁忌症),这并没有导致任何接受所有疫苗剂量的人,因为他或接受了所有疫苗的剂量。研究表明,可能出于多种原因发生MOV,包括未检查疫苗接种的卫生工作者,疫苗接种服务与其他卫生服务的有限整合,管理疫苗的员工短缺,疫苗接种卡不良以及疫苗的储备或销售疫苗或相关用品的库存[1,3 - 9]。MOV可能会阻碍国家增加其疫苗接种覆盖范围;解决MOV的成功努力有可能帮助各国达到其设施目标,提高及时性并促进健康计划之间的融合。在全球范围内,对MOV的首次系统文献综述确定了育龄年龄的儿童和妇女的全球MOV患病率为32%,他们访问了一个卫生中心,在访问时有资格接种疫苗的妇女和儿童的亚人群中有67%[1]。2014年发表的最新系统评价确定了儿童的全球中位MOV患病率相同,在拜访健康中心的育龄妇女中,患病率为32%,47%[10]。不幸的是,这些系统文献评论在过去20年中全球减少的MOV降低方面的进展有限[1,10]。然而, 2016年,每年出生队列的35%仍然不足[14,15]。2016年,每年出生队列的35%仍然不足[14,15]。2008年,肯尼亚认可了《 2030年愿景发展的国家多年战略计划》,该计划为所有推荐疫苗的所有婴儿设定了90%的疫苗接种覆盖率[11]。从那时起,肯尼亚国家疫苗和免疫计划(NVIP)引入了几种新疫苗,包括肺炎球菌结合物疫苗(PCV)(2011),第二剂含麻疹疫苗(MCV)(2013)(2013)和Rotavirus疫苗(2014)[12-13] [12-13]。肯尼亚的这些儿童中有一部分可能已经在获得其他卫生服务的医疗机构,但可能会因疫苗接种而错过。对2014年人口统计和健康调查数据的综述发现,MOV患病率为42%,对Maasai Nomadic的儿童进行了研究
1. Barker DJ, Osmond C. 英格兰和威尔士的婴儿死亡率、儿童期营养和缺血性心脏病。柳叶刀。1986;1(8489):1077-1081。2. Hales CN, Barker DJ。2 型(非胰岛素依赖型)糖尿病:节俭表型假说。糖尿病学。1992;35(7):595-601。3. Nobile S, Di Sipio Morgia C, Vento G. 成人疾病的围产期起源和健康促进机会:叙述性综述。J Pers Med。2022;12(2)。4. Ramirez V, Bautista RJ, Frausto-Gonzalez O, Rodriguez-Pena N, Betancourt ET, Bautista CJ。动物模型中的发育编程:当前环境负面变化的关键证据。生殖科学。2023;30(2):442-463。5. Cait A、Wedel A、Arntz JL 等人。产前抗生素暴露、哮喘和过敏性进展:系统评价和荟萃分析。过敏。2022;77(11):3233-3248。6. Alhasan MM、Cait AM、Heimesaat MM 等人。怀孕期间使用抗生素会以剂量依赖性方式增加后代哮喘的严重程度。过敏。2020;75(8):1979-1990。7. Alhasan MM、Holsken O、Duerr C 等人。怀孕期间使用抗生素与后代肠道微生物失调、屏障破坏和肠肺轴免疫力改变有关。 Eur J Immunol . .2023; 53(10):e2350394。8. Kim E、Paik D、Ramirez RN 等人。母体肠道细菌通过改变 CD4( + ) T 细胞的染色质景观导致患有神经发育障碍的后代肠道炎症。Immunity . 2022;55(1):145-158。e147。9. Kim S、Kim H、Yim YS 等人。母体肠道细菌促进小鼠后代神经发育异常。Nature . 2017;549(7673):528-532。10. Lim AI、McFadden T、Link VM 等人。产前母体感染促进后代组织特异性免疫和炎症。Science . 2021;373(6558)。 11. Jasarevic E, Howard CD, Misic AM, Beiting DP, Bale TL。妊娠期压力会以性别特异性的方式改变母体和后代微生物组的时空动态。Sci Rep. 2017;7:44182。
是通过BM活检和血清学/尿液标记物(例如浆细胞浸润率(PCIR),无血清光链(SFLC)比率,血清/尿液/尿液和细胞遗传学状态的Proprotein(M蛋白)(M蛋白)来完成的。4-6然而,这些生物标志物检查遭受了不可避免的赤字,例如侵入性,痛苦和昂贵。是Durie和Salmon在1975年首次引入的,对骨骼的常规射线照相调查应用于阶段的MM骨病。7然而,由于检测溶裂性病变的灵敏度低并且无法评估治疗反应,因此要求使用更多实用的技术。随着成像技术的开发,例如单谐波计算机断层扫描(MECT),磁共振成像(MRI)和氟脱氧葡萄糖正电子发射 - 发射 - 发射 - pET(FDG PET/CT),BM浸润的直接评估已成为可能。8 mect是广泛可用和经济高效的,因此通常首先通过全身扫描评估MM患者。9,测试的主要局限性是检测轴向骨骼中非延展BM浸润的较低现象性,这对于MM患者而言更为常见。MRI被确认为BM浸润的“成像黄金标准”,事实证明,检测MM病变的敏感性更高。10,而对于可能导致难以忍受的疼痛和幽闭恐惧症的患者进行检查需要很长时间。最近建议使用11,12 FDG PET/CT来评估治疗量的反应和残留活性,因为它可以迅速响应BM的变化。13但是,应考虑相关的辐射和经济成本。双层光谱CT(DLCT)是一种新型的CT技术,具有两个不同的检测器层,可吸收聚染色的X射线光谱的不同部分。它可以根据研究的目的构建各种参数图像,例如尿酸,碘或钙。最近的研究表明,DLCT,尤其是虚拟非钙(VNCA)图像,与MECT相比,在评估MM时显示出显着改善,与FDG PET/CT和MRI相当。14-16因此,我们的研究有两个目标:首先,探讨VNCA图像在估计MMM患者中用MRI作为参考标准的BM浸润中的潜力。其次,要确定VNCA图像是否可以通过与已建立的生物标志物(PCIR,SFLC比和细胞遗传学StaTus)相关的肿瘤负担来表征肿瘤负担。
妊娠期间(Smollin&Olson,2008)。怀孕期间的急性与早产和自发流产有关,怀孕可能取决于孕产妇中毒和胎儿年龄的严重程度(Smollin&Olson,2008年)。胎儿死亡可能发生在非致死性母体一氧化碳暴露时(Longo,1977)。通常认为CO中毒会造成严重的损害和死亡,但对低级暴露的了解少得多。CO暴露于6 ppm及较低的情况可能会影响血管功能(Bendell et al。,2020)和流行病学研究报告胎儿的孕产妇CO暴露与胎儿的隔离缺陷之间的关联(Dadvand等,2011a; Ritz等人,Ritz等,2002; Zhang et al。但是,其他研究未能复制这些发现(Chen等,2014)。作为胎儿cohb,在稳态条件下,比母体Cohb高10% - 15%(Longo,1977),在长期暴露期间,敌人可能尤其处于危险之中。CO暴露在人类中很难进行实验研究。在持续时间和数量方面,交付道德的CO水平都受到限制。虽然使用人类中的低级CO干预进行了一些工作,例如Bendell等人。(2020),此类研究在孕妇中是不可行的。 雏鸡是发展研究的常见模型,因为胚胎在OVO中很容易通过哺乳动物高度保守的渐进器官开发。(2020),此类研究在孕妇中是不可行的。雏鸡是发展研究的常见模型,因为胚胎在OVO中很容易通过哺乳动物高度保守的渐进器官开发。这也是CO研究的好模型,因为CO在雏鸡中的反应类似于哺乳动物的反应(Stupfel等,1982)。此外,在Hamburger-Hamilton阶段35(胚胎日(d)9)雏鸡胚胎心脏及其四个腔室与人类心脏的结构相似,而不是其他非哺乳动物模型生物(Wittig&Munsterberg,2016年)。可以轻松控制卵子的气态环境,从而进一步巩固其作为CO研究模型的实用性。在发育的10天后,雏鸡的心脏完全形成(Vilches-Moure,2019年)。当前研究的目的是询问低级CO暴露对雏鸡胚胎早期发育的影响,尤其是专注于心脏发育。
我们刚刚完成了 IDEF 展览,该展览会邀请了土耳其和外国的主要利益相关者,并展示了土耳其国防和航空航天工业的现状。在国际舞台上逆风吹袭土耳其之际,IDEF'17 展览会见证了土耳其国防和航空航天工业的杰出表现。关于这次展览会,当然有很多可以说的;但是对于那些询问该行业取得了多大进步的人,我们可以从不同的角度来回答他们。让我们回顾 2003 年的 IDEF,并考虑这一点:如果大约 15 年前就存在我们今天所处的国际形势——换句话说,如果当时位列 IDEF 最大参与者之列的各外国公司各自的国家在 2003 年对土耳其的态度与 2017 年的一样——IDEF 展览会会有什么不同?或者它从一开始就有可能吗?让我们回忆并想象 IDEF 2003 的展台。(不熟悉那段时期的人可以查看 IDEF 2003 的档案照片。)IDEF 2003 也展示了我们今天拥有的相同类型的国防车辆和设备。当然,当时有 2003 年的车型,而今天我们有 2017 年的车型。但 IDEF 2003 和 IDEF 2017 之间的主要区别在于展出车辆的实际所有者已经改变。许多系统和平台
简介:糖尿病被认为是全球健康问题。 div>在过去的十年中,已经报道了小儿种群中新的糖尿病2型糖尿病病例的增加。 div>直到8年前,CMN综合医院“ La Raza”的小儿内分泌服务中还没有记录这种糖尿病。 div>目前有71例糖尿病诊断(DM)2型患者。 div>目的:确定DM 2型小儿种群中的clfnic,人体测量和代谢特征。设计:横向,观察性,描述性调查,无方向性。 div>材料和方法:研究了71名儿童和青少年的临床诊断,对男性的DM 2、31和女性的临床诊断,平均年龄为12.8±2.3和13。。分别为7±1 .8。 div>每个人都研究了诊断的心血管危险因素和症状的家族史;进行了人体测量法,并在幼体后相提取静脉血样品,以测定葡萄糖,脂质和脂蛋白。 div>女性比男性的BMI显着,尽管它没有达到统计意义,但与儿童相比,女性的年龄也谨慎。 div>诊断,体重,taifa,腰部和臀部周长,心率和血压的年龄相似。 div>男性的禁食葡萄糖的含义较低。 div>在两个性别中,CT,C-LDL和C-HDL的平均水平相似。 div>甘油三酸酯的水平在女孩中谨慎地更大,尽管没有达到统计意义。 div>在女性中,发现高胆固醇血症,高甘油三酯血症和高血压的较高患病率,而两组中低α-丙型蛋白血症和肥胖的频率相似。 div>在诊断时,两性占主导地位的最重要的临床表现是多毒,多尿,体重减轻,棘皮动物鼻孔,食欲不振和糖尿病性酮症酸中毒。 div>结论该小组的2型糖尿病和肥胖症的阳性家族病史很高。 div>糖尿病儿童诊断出多次多次,多尿,食欲丧失,棘皮动物刺痛和肥胖。 div>这些患者具有不利的脂质特征和血脂异常的高频率。 div>
超螺旋和拓扑性质。拓扑异构酶。细菌类核。组蛋白和核小体的性质和组装。染色质的高级结构。组蛋白的翻译后修饰。溴多胺和染色质结构域。表观遗传学。原核生物和真核生物的基因组。复制模型。DNA合成。细菌DNA聚合酶。校对和缺口翻译。复制子模型。OriC和半甲基化。Ter/Tus。真核细胞核中的复制工厂。ARS结构和复制控制。酶学。前RC和前启动复合物。复制抑制剂,如化疗药物和抗病毒药物。端粒和端粒酶的结构、功能和意义。DNA损伤和修复。基因组作为动态实体。体细胞和种系突变。SNP。内在和外在损伤。化学和物理诱变剂。原核生物和真核生物中的去除、逆转和损伤避免系统。MUT 系统。BER 系统。糖基化酶的重要性。安全系统。NER 系统:UvrABCD 和 XP 蛋白。GG-NER 和 TC-NER。光解作用、MGMT、AlkBH。损伤耐受机制。TLS。细菌中的 SOS 反应。单丝和双丝断裂。HR 和 NHEJ。由于修复系统突变而导致的人类疾病。位点特异性重组。重组酶。Lambda 噬菌体。Cre-Lox 系统和 KO 小鼠。简单和复杂的转座子。SINE 和 LINE 元素、Alu 序列。原核生物和真核生物中的 RNA。结构、类型和特性。细菌 RNA 聚合酶和相关因子。转录单位。转录步骤。细菌启动子中的共识序列。终止机制。抑制剂。 Lac、ara 和 trp 操纵子。阳性和阴性对照。真核细胞中的 RNA 类别。RNA 聚合酶 (CTD) 的结构和功能。三种启动子的特征。基础转录机制。TFIIH。反式激活因子、辅激活因子。CpG 岛甲基化。组蛋白密码。长程调节剂。DNA 结合蛋白的功能域 (HTH、HD、HLH、ZF、LZ)。RNA 成熟、核运输和转录后控制。加帽类型。添加 polyA。CTD 的变化。外显子和内含子。外显子改组。四类内含子及其去除机制。剪接体和剪接位点。AT-AC 剪接。EJC 复合体。可变剪接。ESE 和 ESS 序列、SR 和 hnRNP 蛋白。SMN 基因。剪接和病理。rRNA 和 tRNA 加工反应。核糖体基因。 SnoRNA 和核仁功能。RNA 编辑。插入和转换编辑。人类 RNA 编辑的示例。细胞核和细胞质中的 RNA 周转。外泌体。无义介导的 mRNA 衰变 (NMD)。非编码 RNA。小 RNA 在细胞中的功能。RNA 干扰。siRNA。微小 RNA 的生物发生。miRNA、长链非编码 RNA、环状 RNA 的作用机制。逆转录病毒的一般信息。遗传密码和翻译。遗传密码的性质和特征。线粒体密码。ORF。tRNA 的特征。不常见碱基。aa-tRNA 合成酶的功能和类别。遗传密码的翻译重编码和扩展。SeCys。核糖体是一种核酶。原核生物和真核生物的翻译阶段。不同的启动机制。能量成本。NSMD。细菌中的 tmRNA。抑制剂。蛋白质的翻译后修饰、分选和降解。折叠和错误折叠。朊病毒。HSP60 和 HSP70。泛素和泛素化系统。SUMO 化糖基化。蛋白酶体。肽信号。蛋白质分选。线粒体输入。线粒体基因组细胞中的线粒体可塑性。人类线粒体基因组。遗传、结构、复制及其表达的原理。线粒体 DNA 中的改变。DNA 克隆的原理。修饰限制系统。克隆载体。cDNA 合成。基因组 DNA 和 cDNA 文库。TA 克隆。表达克隆。基因表达沉默。基因治疗。数据库。基因组编辑元件(Talen、Zn 指、CRISPR/Cas9 系统)。PCR 和 DNA 测序。PCR 的特性。PCR-RFLP。实时 PCR、DNA 测序。NGS。核酸杂交。杂交原理。熔点和严格性。探针制备:切口平移。Southern、Northern、杂交测定。蛋白质印迹。