增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
图1-1:基于分布的偏置校正方法的示例。8图2-1:使用乘法性分位数映射的偏见和原始访问-CM2校正和原始访问CM2的CCS数据。14图2-2:比较了9个指数的几种方法学变异的性能的热图。16图3-1:VCSN的Tasmin的年度气候,偏置校正CCAM输出,Loyo CV和RAW CCAM输出以及VCSN的偏置。17图3-2:VCSN累积降水的年度气候,偏见校正了访问-CM2 - CCAM输出,Loyo CV和Raw Access-CM2-CCAM输出以及VCSN的偏见。18图3-3:tasmax的VCSN的冬季气候,偏见校正了ec-earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。19图3-4:偏置校正的GFDL-ESM4 - CCAM输出的NZ 12个位置的长期月度平均累积降水量。20图3-5:VCSN的TXX年度气候,偏置校正Ec-Earth3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。21图3-6:VCSN一天的最高强度降雨的年度气候,偏见校正了EC-EARTH3 - CCAM输出,Loyo CV和RAW EC-EARTH3-CCAM输出以及VCSN的偏见。22图3-7:Perkins技能分数比较了湿法长度与VCSN的直方图与VCSN的偏置校正Ec-Earth3-CCAM输出,相应的交叉验证的校正后的输出和原始输出。23图3-8:夏季和冬季的历史和SSP3-7.0实验之间的气候变化信号在这些季节内积累的降水量。3924图3-9:历史和SSP3-7.0实验和CCS的霜冻天数量。25图3-10:偏置校正的访问-CM2输出与历史和SSP3-7.0实验中每日累积降水的相应原始模型输出之间的时间相关性。26图A-1:线性间隔节点,对数间隔节点和Sigmoid间隔节点的分位间距。33图A-2:从分布中绘制的虚拟数据,参考和模拟数据具有相同的平均值和高方差。35图A-3:虚拟数据,参考和模拟数据从平均值和较高方差的分布中绘制。36图A-4:与分组器的乘法降水虚拟数据的每月平均值。37图A-5:在SSP370场景下,访问CM2-CCAM的夏季和冬季气候变化信号。38图A-6:在SSP370方案下,Mahanga站上的气候变化信号,强调了EQM对趋势的通胀影响,而没有明确的趋势保存。