摘要 - 尽管垃圾箱是机器人操纵的关键基准任务,但社区主要集中于将刚性直线物体放置在容器中。我们通过呈现一只软机器人手,结合视力,基于运动的本体感受和软触觉传感器来识别,排序和包装未知物体的流。这种多模式传感方法使我们的软机器人操纵器能够估计物体的大小和刚度,从而使我们能够将“包装好容器”的不定定义的人类概念转化为可实现的指标。我们通过逼真的杂货包装场景证明了这种软机器人系统的有效性,其中任意形状,大小和刚度的物体向下移动传送带,必须智能地放置以避免粉碎精致的物体。将触觉和本体感受反馈与外部视力结合起来,与无传感器基线(少9倍)和仅视觉的基线相比,项目受损的填料操作显着降低(4。少5×)技术,成功地证明了软机器人系统中多种感应方式的整合如何解决复杂的操作应用。
我们提出了一个场景表示形式,我们称之为触觉的辐射场(TARF),它将视觉和触摸带入共享的3D空间。此表示形式可用于估计场景中给定3D位置的视觉和触觉信号。我们从一系列照片和稀疏采样触摸探针中捕获了场景的tarf。我们的方法利用了两个见解:(i)基于常见的触摸传感器建立在普通摄像机上,因此可以使用多视图几何形状中的方法对图像进行注册,并且(ii)在视觉和结构上相似的场景区域具有相同的触觉效果。我们使用这些见解将触摸信号注册到捕获的视觉场景中,并训练有条件的扩散模型,该模型带有从神经辐射场呈现的RGB-D图像,生成其相应的触觉信号。为了评估我们的方法,我们收集了一个TARF的数据集。此数据集比预先持有的现实世界数据集包含更多的触摸样本,并且为每个捕获的触摸信号提供了空间对齐的视觉信号。我们揭示了跨模式生成模型的准确性以及在下游任务上捕获的视觉效果数据的实用性。项目页面:https:// dou- yiming.github.io/tarf。
空间注意力的机制优先考虑与其他位置相对于其他位置的感官信息。这些机制已通过多种方法进行了深入的研究,包括心理物理学,事件型大脑电位,功能成像和单细胞记录(例如,参见Parasuraman,1998年,有关所有这些方法的发现)。这项工作导致了许多可复制的发现和一些重要的区别。的秘密关注转移(例如Mangun,Hillyard和Luck,1993; Posner,1978)。刺激驱动的外源机制已与预期驱动的内源性机制区分开来(例如Hopfinger&Mangun,1998; Jonides,1981; Posner,1978)。通常通过使用空间非预测的外围提示来研究前者,后者通过中央提示或指示可能目标位置的指令进行研究。两种形式的提示都可以在提示的位置带来性能优势,但是外源和内源性机制被认为在几种方面有所不同,包括其效果的时间过程(例如,外源性效应通常更短暂地遵循
摘要:本文介绍了基于电容性变化的低成本和多触摸传感器的新设计和开发。这个新传感器非常灵活且易于制造,使其成为软机器人应用程序的适当选择。该传感器中使用的材料(导电墨水,有机硅和控制板)是便宜且在市场上很容易找到的。提出的传感器由不同层的晶圆,带有导电墨水的硅胶层和压力敏感的导电纸片制成。像E-Skin这样的先前方法可以测量像人体或纤维等导电物体的接触点或压力,而所提出的设计使传感器能够检测物体的接触点和施加力,而无需考虑对象的材料电导率。传感器可以同时检测五个多点触点。在存在噪声,增益变化和非线性的情况下,使用神经网络结构以可接受的精度来校准施加力。通过商业精确力传感器(ATI)实时测量的力与通过在两个电极层之间更改层的电容获得的产生的电压映射。最后,嵌入建议的触觉传感器的软机器人抓手被用来掌握具有位置和力反馈信号的物体。
尽管与其他类型的心理意象相比,触觉意象的研究并不深入,但它对于脑机接口 (BCI) 来说可能非常有用,因为它可以产生 BCI 操作所需的神经调节。在这里,我们通过比较触觉意象 (TI) 对皮质反应的影响与指尖实际振动触觉刺激的影响,评估了与触觉意象 (TI) 相关的神经调节。我们发现 TI 和振动刺激都会引起与事件相关的脑电图 (EEG) 活动频率变化。此外,TI 会影响由短脉冲振动引起的体感诱发电位 (SEP)。收集了 29 名接受过触觉意象任务训练的参与者的 EEG 数据。在有和没有 TI 的情况下测量了对振动脉冲的反应。这些 SEP 由三个主要部分组成:中央顶叶区域的 P100 反应、额叶区域的 P200 反应和中央区域的 P300 反应。 TI 持续导致同侧 P100、同侧和对侧 P300 以及额叶 P200 增加。此外,TI 还增强了额叶区域因振动而发生的 θ 波段 ERS。这些发现表明,TI 不仅会调节 EEG 模式,还会影响皮质对物理体感刺激的处理。这种对真实和想象的躯体感觉的联合处理可用于 BCI,特别是在临床相关的 BCI 中,这些 BCI 致力于通过结合中枢诱导和外周活动来恢复体感处理。
摘要 - 为了使人形机器人能够在共有的环境中稳健地工作,多接触运动不仅在四肢(例如手脚),而且在四肢的中间区域(例如膝盖和肘部)的中间区域进行接触。我们开发了一种实现这种全身多接触运动的方法,该运动涉及人形机器人在中间区域的接触。可变形的板状分布式触觉传感器安装在机器人四肢的表面上,以测量接触力,而无需显着改变机器人体形。较早开发的多接触运动控制器(专门用于肢体接触)扩展以处理中间区域的接触,并且机器人运动通过反馈控制稳定,不仅使用力/扭矩传感器,还可以使用分布式的触觉传感器来稳定。通过对Dynamics模拟的验证,我们表明,开发的触觉反馈提高了全身多接触运动的稳定性,以防止干扰和环境错误。此外,寿命大小的人形RHP kaleido展示了全身多接触运动,例如向前走,同时通过前臂接触支撑身体,并在坐着的姿势和大腿接触中平衡姿势。
摘要 本文探讨了压电传感器在外科手术机器人假肢中的创新应用,强调了它们在精细手术过程中增强触觉反馈的潜力。压电传感器可以有效地将机械压力和振动转换为电信号,为外科医生实时感受和解释力、纹理和其他表面特征提供了重要手段。通过基于云的系统生成和传输触觉反馈的能力允许创建触觉模式数据库,从而能够在手术过程中自动识别特定的触觉交互。人工智能 (AI) 的集成通过从收集的数据中学习、预测未来的交互和优化模式识别进一步增强了系统。此外,将压电传感器与其他类型的传感输入(例如温度和应变计)相结合,可以实现多维反馈系统。这会带来身临其境的体验,使外科医生能够精确控制他们的机器人工具。通过人工智能和数据收集不断改进这些系统,为机器人手术的未来发展带来了巨大的潜力,从而实现更准确、更安全的手术和更好的患者治疗效果。这项研究强调了人工智能驱动的多感官反馈系统在增强机器人辅助手术能力方面的变革性影响。
结果结果表明,较短的交货时间导致更快的接管反应,从而导致更快的反应时间和更长的手动驾驶时间。此外,当使用视觉和听觉通知(VA)并使用安全带张力模式(T)时,与仅使用视觉和听觉通知相比,接管反应时间的速度明显更快。尤其是,当使用高不于安全带张力模式(VA+T HU1)时,发生了最快的反应时间。手动驾驶时间最短时,当较低的安全带张力图案(VA+T LU)和高紧迫性模式(VA+T HU1)时,可能是由于驾驶员对更紧急信号的响应的速度更快。车道的出发,碰撞或非驾驶任务绩效没有显着差异。然而,对安全带张力模式(可靠性,可靠性和整体满意度)的主观满意度高度积极,平均高于4.5分。
这项工作得到了国家科学技术重大项目(2022ZD0114900)的部分支持Horizon Europe框架通过可触及的项目(101092518)。(Zihang Zhao和Yuyang li对这项工作也同样贡献。相应的作者:Lecheng Ruan和Yixin Zhu。)Zihang Zhao和Yixin Zhu曾与中国北京大学100871北京大学的人工智能研究所一起(电子邮件:zhaozihang@stu@stu.pku.edu.edu.cn; yixin.zhu@pku.edu.edu.cn)。Yuyang Li和Zhenghao Qi曾在中国北京大学,北京大学,北京大学和北京通用人工智能研究所,中国北京100080,中国以及自动化部,北京大学,北京大学,北京大学,北京大学,北京大学,北京100084,中国(电子邮件): {liyuyang20,qi-zh21}@mails.tsinghua.edu.cn)。Wanlin Li与中国北京100080的北京通用人工智能研究所合作(电子邮件:liwanlin@bigai.ai)。Lecheng Ruan曾在中国北京100871的北京大学工程学院以及中国武汉430075的PKU-Wuhan人工智能研究所(Ruanlecheng@ucucla.edu)任职。Zihang Zhao和Lecheng Ruan在这项工作中也部分地在北京通用人工智能研究所中。数字对象标识符(DOI):请参阅此页面的顶部。Kaspar Althoefer曾在英国伦敦皇后大学伦敦皇后大学工程与材料科学学院内的高级机器人中心 @皇后玛丽(Queen Mary),伦敦E1 4NS(电子邮件:k.althoefer@qmul.ac.uk)。
本季度报告 Form 10-Q 中包含的所有陈述(历史事实陈述除外)均为前瞻性陈述,包括有关我们的业务、运营和财务业绩和状况的陈述,以及我们对业务、运营和财务业绩和状况的计划、目标和期望。在某些情况下,您可以通过以下词语识别前瞻性陈述:“预期”、“相信”、“继续”、“可能”、“估计”、“期望”、“打算”、“可能”、“或许”、“正在进行”、“计划”、“潜在”、“预测”、“项目”、“应该”、“目标”、“将”、“会”或这些术语的否定词或其他类似术语,但并非所有前瞻性陈述都包含这些词语。前瞻性陈述涉及已知和未知的风险、不确定性和其他因素,这些因素可能导致我们的结果、活动水平、业绩或成就与本季度报告 Form 10-Q 中的前瞻性陈述所表达或暗示的信息存在重大差异。这些风险、不确定性和其他因素包括但不限于: