本报告由世界银行尼泊尔宏观经济、贸易与投资 (MTI) 团队编写,该团队由 Florian Blum (高级经济学家,MTI)、Alice J Brooks (高级经济学家,MTI) 和 Nayan Krishna Joshi (经济学家,MTI) 组成。报告的第一部分由 Florian Blum (高级经济学家,MTI)、Alice J Brooks (高级经济学家,MTI) 和 Nayan Krishna Joshi (经济学家,MTI) 编写。特别关注部分由 Alice J Brooks (高级经济学家,MTI)、Thi Thanh Bui (经济学家,EMFMD) 和 Biying Zhu (长期顾问,MTI) 编写。MFMod-CC 模型的校准和估计由 Thanh Bui 负责。 Nethra Palaniswamy(POV 高级经济学家)和 Prashant Raj Pandey(ESAF1 经济学家)提供了意见。水电投资计划由 Rabin Shrestha(ISAE1 高级能源专家)和 Fanny Missfeldt-Ringius(ISAE1 首席能源专家)制定。报告受益于 Prakash Kumar Shrestha 博士(尼泊尔中央银行执行董事)的咨询。团队感谢 Mathew Vergis(南亚地区公平增长、金融和机构 (EFI) 主任)、Faris Hadad-Zervos(马尔代夫、尼泊尔和斯里兰卡国家主任)、Lada Strelkova(运营经理)、Shabih Ali Mohib(MTI 实践经理)和 Tae Hyun Lee(EFI 首席国家经济学家)对报告的指导和评论。 Andrew Burns(EMFMD 首席经济学家)就特别关注部分的内容提供了有益的建议
智能手机上的 ASW(反潜战)模拟器 Hyunhui Kim、Jemin Lee、Tesup Kim 和 Kangsun Lee* 明知大学计算机工程系 San 38-2 NamDong,龙仁,京畿道,449-728,韩国 以及 Kyu Cheol Cho、Sung Ho Jang、Tae Young Kim、JongSik Lee 仁荷大学计算机科学与工程学院 #253,YongHyun-Dong,南区,仁川,402-751,韩国 摘要 1 随着现代武器系统变得复杂和昂贵,在实际开发之前预测新武器系统的有效性的需求日益增加。在本文中,我们介绍了一个 ASW(反潜战)模拟器来衡量智能手机上 TAS(拖曳阵列声纳)的有效性。我们的模拟器由红蓝潜艇模型、环境模型(即海)和交战模型组成,以真实地模拟水下战争并据此衡量 TAS 的有效性。已经开发了 Web 服务来将模拟结果发送到智能手机客户端。根据我们进行的实验,在智能手机上模拟武器系统只消耗了有限的内存和电池。我们的工作表明,智能手机可以成为随时随地模拟武器系统的可行设备。关键词:国防建模与仿真、模型可重用性、建模形式主义、标准接口 1.简介 由于现代武器系统配备了高科技传感器和复杂控制器,因此开发成本也相应增加。然而,在现实生活中,期待新武器系统的有效性和投资回报率 (ROI) 几乎是不可能的。SBA(基于模拟的采购)[1] 旨在通过在实际开发和部署新武器系统之前提供其性能和有效性的测量来帮助决策者。随着 SBA 在新武器系统的采购过程中的普及,越来越多的人希望随时随地在各种手持设备上准备好有效性数据。* 通讯作者:所有通信应发送至 ksl@mju.ac.kr
新闻稿 新加坡,2022 年 4 月 5 日 新加坡南洋理工大学科学家开发出一种可回收的花粉纸,可重复打印和“取消打印” 新加坡南洋理工大学 (NTU Singapore) 的科学家开发出了一种以花粉为基础的“纸”,在打印后可以“擦除”并重复使用多次,而不会损坏纸张。 在 4 月 5 日《先进材料》杂志在线发表的一篇研究论文中,新加坡南洋理工大学的科学家演示了如何使用激光打印机在非过敏性花粉纸上打印高分辨率彩色图像,然后使用碱性溶液“取消打印”——即在不损坏纸张的情况下完全去除碳粉(见下方编者注中的图片 1)。 他们证明这个过程可以重复至少八次。 这种创新的、可立即打印的花粉纸可以成为传统纸张的环保替代品,传统纸张经过多步骤工艺制成,对环境有显著的负面影响,由 Subra Suresh 和 Cho Nam-Joon 教授领导的 NTU 团队表示。它还可以帮助减少与传统纸张回收相关的碳排放和能源使用,这涉及再制浆、脱色(去除打印机墨粉)和重建。 这个全 NTU 研究团队的其他成员包括研究员 Ze Zhao 博士、研究生 Jingyu Deng 和 Hyunhyuk Tae 以及前研究生 Mohammed Shahrudin Ibrahim。 NTU 校长兼该论文的资深作者 Subra Suresh 教授说:“通过这项研究,我们展示了我们可以在由天然植物材料制成的纸张上打印高分辨率彩色图像,这种材料通过我们最近开发的一种工艺变得不致敏。 我们进一步证明了在不破坏纸张的情况下反复这样做的可行性,使这种材料成为传统木质纸张的可行环保替代品。 这是一种纸张回收的新方法——不仅以更可持续的方式造纸,而且还通过
上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。
2025 MSTS Specialty Day Program Friday, March 14, 2025 Program Committee Leadership Panayiotis Papagelopoulos, MD, FACS, Program Chair Alan T Blank, MD MS, Vice Chair Alexander Lazarides MD, Member -At-Large 8:00 am – 8:05 am Welcome Rajiv, Rajani MD, MSTS President Panayiotis Papagelopoulos, MD, FACS, Program Chair Musculoskeletal Oncology Unknowns (5 cases) Presenter: Alexander Lazarides, MD – Moffit Cancer Center, Tampa, FL 8:05 am Session I: Computer Assisted vs Robotic Assisted vs Cutting Guide Assisted Surgery in Orthopedic Oncology Moderators: David Joyce, MD – Moffit Cancer Center Julia Visgauss, MD – Duke University Hospital 8:05 am-8:15 am Benefits of肌肉骨骼肿瘤学主持人的计算机导航和机器人辅助手术主持人:李·杰伊斯(Lee Jeys),医学博士 - 英国伯明翰皇家骨科医院8:15 AM-8:25 AM切除切除指南技术的好处在肉瘤外科手术演示者中的好处没有先进技术的手术?Alan t Blank MD,MS-芝加哥Rush MD Anderson Cancer Center,8:35 AM -8:50 AM案例例子和小组成员论点8:50 AM - 9:00 AM从听众到第9:00 AM的第9:00 AM会议II:转移性骨病中的争议:转移性骨病中的争议上午9:00 AM-9:上午10点进行了尝试:骨盆演示者转移性骨病的开放手术:Cory Couch,MD - HCA - HCA - HCA - TX 9:10 AM-9:20 AM-9:20 AM New and Revered:经耐受性治疗转移性骨病给Pelvis Exchanser:David King:David King,MD- MD-WISCONSIN-WISCONSIN,WISCONSIN,WI
Oskaras Alšauskas(运输)、Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济前景、电力负责人)、Blandine Barreau(复苏计划)、Simon Bennett(氢能、能源技术联合负责人)、Charlène Bisch(数据管理)、Justina Bodláková(就业)、Olivia Chen(就业)、Yunyou Chen(电力)、Daniel Crow(行为、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(关键矿物)、Tanguy De Bienassis(投资和金融)、Tomás de Oliveira Bredariol(煤炭、甲烷负责人)、Michael Drtil(电力和电网)、Darlain Edeme(非洲)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Pablo González(投资和金融)、Timothy Goodson(建筑负责人)、Emma Gordon(投资和金融)、Jérôme Hilaire(石油和天然气供应建模负责人)、Paul Hugues(工业负责人)、Jacob Hyppolite II(能源获取)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Hyeji Kim(交通)、Tae‐Yoon Kim(能源安全和关键矿产负责人)、Martin Kueppers(工业)、Tobias Lechtenbohmer(工业)、Laura Maiolo(石油和天然气供应)、Orla McAlinden(行为)、Yannick Monschauer(可负担性)、Toru Muta(化石燃料补贴负责人)、Paweł Olejarnik(供应建模)、Diana Perez Sanchez(工业)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(煤炭供应负责人)建模、数据管理)、Arthur Rogé(建筑)、Max Schoenfisch(电力)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(建筑、行为)、Gianluca Tonolo(能源获取负责人)、Wonjik Yang(数据可视化)和 Peter Zeniewski(天然气负责人)。其他贡献者包括 Niccolò Hurst 和 Carlo Starace。Marina Dos Santos 和 Eleni Tsoukala 提供了重要支持。
Oskaras Alšauskas(运输)、Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济前景、电力负责人)、Blandine Barreau(复苏计划)、Simon Bennett(氢能、能源技术联合负责人)、Charlène Bisch(数据管理)、Justina Bodláková(就业)、Olivia Chen(就业)、Yunyou Chen(电力)、Daniel Crow(行为、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(关键矿物)、Tanguy De Bienassis(投资和金融)、Tomás de Oliveira Bredariol(煤炭、甲烷负责人)、Michael Drtil(电力和电网)、Darlain Edeme(非洲)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Pablo González(投资和金融)、Timothy Goodson(建筑负责人)、Emma Gordon(投资和金融)、Jérôme Hilaire(石油和天然气供应建模负责人)、Paul Hugues(工业负责人)、Jacob Hyppolite II(能源获取)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Hyeji Kim(交通)、Tae‐Yoon Kim(能源安全和关键矿产负责人)、Martin Kueppers(工业)、Tobias Lechtenbohmer(工业)、Laura Maiolo(石油和天然气供应)、Orla McAlinden(行为)、Yannick Monschauer(可负担性)、Toru Muta(化石燃料补贴负责人)、Paweł Olejarnik(供应建模)、Diana Perez Sanchez(工业)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(煤炭供应负责人)建模、数据管理)、Arthur Rogé(建筑)、Max Schoenfisch(电力)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(建筑、行为)、Gianluca Tonolo(能源获取负责人)、Wonjik Yang(数据可视化)和 Peter Zeniewski(天然气负责人)。其他贡献者包括 Niccolò Hurst 和 Carlo Starace。Marina Dos Santos 和 Eleni Tsoukala 提供了重要支持。
Oskaras Alšauskas(运输)、Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济前景、电力负责人)、Blandine Barreau(复苏计划)、Simon Bennett(氢能、能源技术联合负责人)、Charlène Bisch(数据管理)、Justina Bodláková(就业)、Olivia Chen(就业)、Yunyou Chen(电力)、Daniel Crow(行为、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(关键矿物)、Tanguy De Bienassis(投资和金融)、Tomás de Oliveira Bredariol(煤炭、甲烷负责人)、Michael Drtil(电力和电网)、Darlain Edeme(非洲)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Pablo González(投资和金融)、Timothy Goodson(建筑负责人)、Emma Gordon(投资和金融)、Jérôme Hilaire(石油和天然气供应建模负责人)、Paul Hugues(工业负责人)、Jacob Hyppolite II(能源获取)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Hyeji Kim(交通)、Tae‐Yoon Kim(能源安全和关键矿产负责人)、Martin Kueppers(工业)、Tobias Lechtenbohmer(工业)、Laura Maiolo(石油和天然气供应)、Orla McAlinden(行为)、Yannick Monschauer(可负担性)、Toru Muta(化石燃料补贴负责人)、Paweł Olejarnik(供应建模)、Diana Perez Sanchez(工业)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(煤炭供应负责人)建模、数据管理)、Arthur Rogé(建筑)、Max Schoenfisch(电力)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(建筑、行为)、Gianluca Tonolo(能源获取负责人)、Wonjik Yang(数据可视化)和 Peter Zeniewski(天然气负责人)。其他贡献者包括 Niccolò Hurst 和 Carlo Starace。Marina Dos Santos 和 Eleni Tsoukala 提供了重要支持。
其他贡献来自NiccolòHurst和Carlo Starace。Marina Dos Santos和Eleni Tsoukala提供了基本的支持。
Oskaras Alšauskas(运输)、Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济前景、电力负责人)、Blandine Barreau(复苏计划)、Simon Bennett(氢能、能源技术联合负责人)、Charlène Bisch(数据管理)、Justina Bodláková(就业)、Olivia Chen(就业)、Yunyou Chen(电力)、Daniel Crow(行为、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(关键矿物)、Tanguy De Bienassis(投资和金融)、Tomás de Oliveira Bredariol(煤炭、甲烷负责人)、Michael Drtil(电力和电网)、Darlain Edeme(非洲)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Pablo González(投资和金融)、Timothy Goodson(建筑负责人)、Emma Gordon(投资和金融)、Jérôme Hilaire(石油和天然气供应建模负责人)、Paul Hugues(工业负责人)、Jacob Hyppolite II(能源获取)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Hyeji Kim(交通)、Tae‐Yoon Kim(能源安全和关键矿产负责人)、Martin Kueppers(工业)、Tobias Lechtenbohmer(工业)、Laura Maiolo(石油和天然气供应)、Orla McAlinden(行为)、Yannick Monschauer(可负担性)、Toru Muta(化石燃料补贴负责人)、Paweł Olejarnik(供应建模)、Diana Perez Sanchez(工业)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(煤炭供应负责人)建模、数据管理)、Arthur Rogé(建筑)、Max Schoenfisch(电力)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(建筑、行为)、Gianluca Tonolo(能源获取负责人)、Wonjik Yang(数据可视化)和 Peter Zeniewski(天然气负责人)。其他贡献者包括 Niccolò Hurst 和 Carlo Starace。Marina Dos Santos 和 Eleni Tsoukala 提供了重要支持。