第 1 部分:可靠性和质量的基本方法 1.当今市场中的可靠性和质量 ○ 可靠性实施的实用方法 ○ 可靠性增长和投资回报率 ○ 可靠性作为差异化因素 ○ DfRQ 公司计划的主要组成部分 2.阶段门方法 ○ 构思、评估、开发、过渡、生产 ○ 了解每个门 - 程序的工具 ○ 将其拼凑在一起 - 增值可靠性程序 3. 基本可靠性数学 ○ MTBF/故障率基础 ○ 故障率转换(FIT、FMH、MTBF、PPM、AFR、%故障) ○ 系统可靠性分析和框图(串联、并联、K/N 冗余、主动/备用) ○ 分配(平等分配和复杂性)○ 可靠性预测(零件数量、详细压力、Telcordia、Mil Std 217……)家庭作业及解决方案
5 Van Zundert B. Neurosci Lett 2017; 636:32-9; 6 Bravo-Hernandez M. Nat Med 2020; 26:118–30。 缩写:ALS:肌萎缩性侧硬化;方差分析:方差分析; ATXN2:ataxin-2; BP:基对; FTD:额颞痴呆; IGV:综合基因组学观众; mRNA:Messenger RNA; mirna:microRNA; PBS:磷酸盐缓冲盐水; NT:核苷酸; NS:不重要; SD:标准偏差; SOD1:超氧化物歧化酶1; WT:野生类型的致谢和披露:这项研究由Aviadobio Ltd. CA,RE,AU,AG,AG,DO,LO,LO,ZW,YB,AA,AA,PH,SC,PC,PC,CM,RJ,JI,JI,JI和CS是Aviadobio Ltd.的员工和股东Aviadobio Ltd.是Aviadobio Ltd.的雇员。 根据国际医学杂志编辑委员会(ICMJE)的建议,作者符合作者身份标准。 医学写作和社论支持由英国Costello Medical的David Morgan和Oliver Palmer,BSC(荣誉),并由Aviadobio Ltd. RJ资助。 CA已从伦敦大学学院和惠康信托基金会获得赠款/合同。5 Van Zundert B. Neurosci Lett 2017; 636:32-9; 6 Bravo-Hernandez M. Nat Med 2020; 26:118–30。缩写:ALS:肌萎缩性侧硬化;方差分析:方差分析; ATXN2:ataxin-2; BP:基对; FTD:额颞痴呆; IGV:综合基因组学观众; mRNA:Messenger RNA; mirna:microRNA; PBS:磷酸盐缓冲盐水; NT:核苷酸; NS:不重要; SD:标准偏差; SOD1:超氧化物歧化酶1; WT:野生类型的致谢和披露:这项研究由Aviadobio Ltd. CA,RE,AU,AG,AG,DO,LO,LO,ZW,YB,AA,AA,PH,SC,PC,PC,CM,RJ,JI,JI,JI和CS是Aviadobio Ltd.的员工和股东Aviadobio Ltd.是Aviadobio Ltd.的雇员。根据国际医学杂志编辑委员会(ICMJE)的建议,作者符合作者身份标准。医学写作和社论支持由英国Costello Medical的David Morgan和Oliver Palmer,BSC(荣誉),并由Aviadobio Ltd. RJ资助。CA已从伦敦大学学院和惠康信托基金会获得赠款/合同。
自 2022 年 12 月 1 日起,NC Medicaid 将把可能需要针对精神健康障碍、物质使用障碍、智力/发育障碍 (I/DD) 或创伤性脑损伤 (TBI) 的某些服务的受益人过渡到行为健康和智力/发育障碍 (I/DD) 量身定制的计划(量身定制的计划)。在此之前,潜在的量身定制的计划成员将通过 NC Medicaid Direct 或标准计划以与今天相同的方式获得医疗保健服务。
核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数
采用Nb含量为25 wt%的混合粉末,通过选择性激光熔化(SLM)原位制备了一种具有定制微观结构、增强力学性能和生物相容性的钛铌(Ti-Nb)合金。研究了激光能量密度从70 J/mm 3 到110 J/mm 3 对SLM打印Ti-25Nb合金的相变、微观结构和力学性能的影响。结果表明,110 J/mm 3 的能量密度可使合金的相对密度最高且元素分布均匀。通过X射线衍射和透射电子显微镜鉴定了具有[023]β//[-12-16]α'取向关系的α'和β相,它们的比例主要取决于激光能量密度。随着能量密度的增加,由于冷却速度降低、温度梯度增大,Ti-25Nb合金的组织由针状晶粒变为粗化的板条状晶粒,再变为板条状晶粒+胞状亚晶粒。打印Ti-25Nb合金的屈服强度和显微硬度随能量密度从70 J/mm 3 增加到100 J/mm 3 而降低,在110 J/mm 3 时又升至最高值645 MPa和264 HV。力学性能的这种变化取决于α'相的粗化和β(Ti,Nb)固溶体的形成。此外,与纯Ti相比,SLM打印的Ti-25Nb合金既表现出优异的体外磷灰石形成能力,又表现出更好的细胞扩散和增殖能力。
Trillium 有 15 个县位于试点区域内。居住在 Beaufort、Bertie、Chowan、Edgecombe、Halifax、Hertford、Martin、Northampton、Pitt、Bladen、Brunswick、Columbus、New Hanover、Onslow、Pender 且患有行为/身体健康状况和一项社会风险因素的医疗补助成员均符合资格。
生成AI在纳米复合材料的开发中的整合通过实现量身定制的功能彻底改变了该领域。这种创新方法利用机器学习算法设计和优化具有特定特性的纳米复合结构。通过生成纳米复合构型的庞大虚拟库,生成的AI加速了具有增强的机械,热和电气性能的新型材料的发现。本摘要概述了生成AI驱动的纳米复合材料设计中最新的最新概述,强调了其改变能源,航空航天和生物医学等行业的潜力。我们探索了这个新兴领域的挑战和机遇,强调了生成AI在纳米复合材料中解锁前所未有的功能的潜力。
目的:尿液是临床微生物实验室中最常见的检测材料。目前已经进行了自动分析,可以更快地获得结果并减少实验室技术人员 (LT) 的工作量。这些自动化系统引入了数字成像概念。PhenoMATRIX (PHM) 是一款人工智能软件,它融合了图片算法和用户规则以提供推定结果。本研究旨在使用 PHM 设计定制的工作流程,执行其验证并检查其在日常实践中的性能。方法:使用两个数据集合,包括来自肾造口术/输尿管造口术和人工膀胱 (US) 的 96 和 135 个尿液样本、来自导管 (UC) 的 948 和 1257 个尿液样本以及 3251 和 2027 个中段尿液 (MSU),将 LT 结果与使用两个版本的 PHM 获得的结果进行比较。另外 19 个 US、102 个 UC 和 508 个 MSU 用于监测常规实施 3 个月后的性能水平。结果:修订前后,PHM 第一版与 LT 结果之间的一致性分别为 83%(95% 置信区间 [CI],74.3 e 90.2)和 83%(95% CI,75.3 e 90.9)(美国),66.7%(95% CI,63.5 e 69.5)和 71.7%(95% CI,68.8 e 74.4)(UC)以及 65.4%(95% CI,63.8 e 67.1)和 76%(95% CI,74.1 e 77.1)(MSU)。第二版结果有所改善,修订前后与 LT 结果的一致性分别为 96.2% (95% CI, 91.6 e 98.8) 和 97% (95% CI, 92.6 e 99.2) (US)、87.5% (95% CI, 85.5 e 89.2) 和 88.9% (95% CI, 87.0 e 90.5) (UC) 以及 91% (95% CI, 89.7 e 92.1) 和 92% (95% CI, 91.1 e 93.4) (MSU)。常规研究证实了 PHM 结果的可靠性,总体一致性为 92% (95% CI, 90.0 e 94.2)。结论:PHM 性能优异,>90% 的结果与 LT 一致。 PHM 可以帮助标准化和确保结果的准确性,在分析工作流程中优先考虑阳性板,并可能节省 LT 时间。Olivier Dauwalder,Clin Microbiol Infect 2021;27:1168.e1 e 1168.e6 © 2020 欧洲临床微生物学和传染病学会。由 Elsevier Ltd. 出版。保留所有权利。
无论是巧合还是宇宙的讽刺,我都在这座曾经是东德政府所在地的前国务院大楼里思考和写下这些危机。ESMT Berlin 由 25 家全球公司创立,坐落在自由市场和自由思想交流都不可能实现的地方。我们距离柏林墙所在地只有几公里,而距离那里不到几十年或几公里的地方,就是策划了可怕的人类暴行的地方。但正是这座房子、这座城市和这个国家的历史表明,捍卫自由价值观并大声坚持人类生命、自由和正义的价值是值得的。最近发生的事件具有历史广度,它们表明了对负责任和创新型领导力的迫切需求。明天的挑战是巨大的。而此时此刻,它的潜力正在以不可估量的方式被削弱。今天的世界是由昨天的创新者——伟大的思想家和规划者——变得更美好的,我们都走在他们的道路上。我们可以共同采取大大小小的措施来确保我们共同的、可持续的、和平的未来。正如我在俄罗斯入侵乌克兰后写信给 ESMT 社区的那样,这场战争与我们的立场形成了鲜明的对比。我们共同的目标是赋予人们创造更美好明天的力量,我们将来自世界各地的教师、员工、学生和许多其他利益相关者聚集在一起,他们和我们一样坚信自由、尊重和责任。我们对俄罗斯侵略的直接反应是立即与俄罗斯国家以及国有公司和机构划清界限,并冻结与它们的所有现有关系。这包括取消计划在俄罗斯的所有教育项目。来自俄罗斯的 ESMT 学生、校友和同事仍然是我们社区备受重视的一部分。他们对这场战争和俄罗斯政府的行为不负责任。