编辑质体基因组有助于了解质体基因的分子功能和设计作物所需的性状(Maliga,2022 年)。DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 能够在线粒体和质体基因组中进行 C 到 T 的编辑(Kang 等人,2021 年;Li 等人,2021 年;Mok 等人,2020 年;Nakazato 等人,2021 年)。最近,Cho 等人(2022 年)开发了 TALE 连接脱氨酶 (TALED),可以催化人类线粒体中的 A 到 G 碱基转化。利用 DddA 毒性的发现(Cho et al ., 2022 ),我们通过探索两种胞苷脱氨酶生成了用于质体编辑的新型单体 TALE 连接的 CBE:具有宽编辑窗口的人类 APOBEC3A 变体(hA3A-Y130F)(Ren et al ., 2021 )和基于 TadA 的改良胞苷脱氨酶(Lam et al ., 2023 ),分别生成 mTCBE 和 mTCBE-T。此外,我们还探索了一种可以同时脱氨胞嘧啶和腺嘌呤的 TadA 衍生脱氨酶(Lam et al ., 2023 ),以设计一种双碱基编辑器,名为 mTCABE-T。这些脱氨酶此前均未在植物或人类的细胞器基因组编辑中进行过研究。我们首先组装了针对三个水稻质体基因的左或右 TALE 阵列,这三个基因编码光系统 II 的核心成分( OsPsbA )、光系统 I ( OsPsaA )和 30S 核糖体亚基 RNA 成分( Os16SrRNA )。构建了三个单体质体碱基编辑器以及 DdCBE 和 Split-TALED 对照,用于在水稻中表达(图 1a )。我们通过靶向扩增子深度测序评估了再生水稻愈伤组织中的碱基编辑效率。令人印象深刻的是,mTCBE 诱导了高效的 C 到 T 转换,在 OsPsbA 、OsPsaA 和 Os16SrRNA 处的平均编辑频率分别为 42.3%、21.6% 和 19.4%(图 1b-d)。 DdCBE 催化 C 到 T 的转化,在这些目标位点的平均编辑效率分别为 7.8%、33.5% 和 34.2%(图 1b-d)。相比之下,mTCBE-T 的效率低于 mTCBE,C 到 T 的编辑效率为
本文研究了三座城市:张家口(位于中国可再生能源丰富的河北省)、大同(位于中国煤炭中心地带的山西省)和水电和天然气资源丰富的成都。本文首先简要概述了国家氢能政策,然后介绍这些城市。然后,每个部分讨论了城市发展氢能的驱动力、直辖市和省政府提供的政策支持以及发展面临的挑战。本文认为,虽然迄今为止的地方氢能政策和计划都指向未来潜在的绿色氢能发展,但它们并没有详细说明绿色氢能如何实现经济效益,也没有提供一条途径让中国巨大的氢能需求摆脱对化石燃料的依赖。相反,在某些情况下,地方氢能战略提供了一种扩大本地生产的化石燃料衍生氢能市场的方法。在许多情况下,氢能与帮助实现脱碳目标关系不大。
Benzer 当时曾接受过加州理工学院常驻果蝇专家 Edward Lewis(现为托马斯·亨特·摩根生物学名誉教授)的果蝇技术培训,但他对此有不同的看法。果蝇产量高,易于饲养,而且不难饲养。此外,对于这种简单的生物来说,它们的行为方式相当丰富。直到 Benzer 和他的学生开始用诱变剂培养他们的标本,并研究从测试中散落出来的大量奇怪和退化的后代时,他才意识到这一点。当时的挑战是研究导致衰老的这些行为异常以及神经功能障碍,以及研究特定神经系统基因突变导致的这些功能障碍。Benzer 和他的合作者开发了实验和分析技术来完成精确的分析,正如 Crafoord 所说,“他和他的许多同事创造了一个新的非常成功的研究领域。”
本文介绍了太空战争法的制定过程,将其作为不具约束力的国际立法案例,并将其与最近关于不具约束力的国际协议的研究成果以及埃莉诺·奥斯特罗姆获得诺贝尔奖的多中心治理理论联系起来。从北约于 2019 年 12 月宣布太空为作战领域,随后美国太空部队成立,到俄罗斯成功试射一颗能够摧毁航天器的杀手卫星,最终在乌克兰爆发了第一次太空网络战争,一个快速升级的循环将曾经用于和平目的的领域变成了战区。然而,与其他战争领域(陆、海、空)相比,这些战争法的发展程度最低。规则供应不足,而多边体系几乎无法通过新的具有法律约束力的文书。太空是否会成为无法无天的战场?本文提出了相反的观点。由于在可预见的未来不会有新的条约,太空战争的法律由多个非联合国论坛逐步制定,这些论坛引入了不具约束力的文书和协议。虽然缺乏全面的方法和法律约束力可能会引起担忧,但本文认为,这是在现代全球事务条件下发展太空战争法律的最佳行动方案,基于经验支持的多中心治理原则。在政策建议方面,本文建议政策制定者采取多中心方法,将治理建设工作转移到支持引入不具约束力的规则和协议的举措上。这些可能会补充有约束力的法律,并在总体上为太空战争创建更全面的规则。本文进一步指出,成员资格和遵守情况比约束力更适合作为国际协议的测试标准,并提出,由于不具约束力的国际协议是对具有法律约束力的条约的补充,因此它们属于国际法的范畴。
1 广东省生物医药大型动物模型重点实验室,五邑大学生物技术与健康科学学院,江门 529020;chenglingyin163@163.com(LC);wyuchemzxq@126.com(XZ);zhengyulingwy@163.com(YZ);wyuchemtcc@126.com(CT);17865815973@163.com(YL);Zheng_SW0@163.com(SZ);lichuan0718@126.com(CL);cmin0501@outlook.com(MC)2 中国科学院广州生物医药与健康研究院、华南干细胞生物学与再生医学研究所再生生物学重点实验室,广州 510530; liu_yang@gibh.ac.cn 3 广东工业大学生物医学与制药学院,广州 510643,中国;13922169135@163.com * 通信地址:lai_liangxue@gibh.ac.cn (LL);zouqj@wyu.edu.cn (QZ) † 这些作者对这项工作的贡献相同。
摘要 - 对网络入侵检测系统的评估需要足够数量的混合网络流量,即由恶意和合法流动组成。特别是获得现实的合法流量很难。合成网络流量是响应不足或不完整的现实数据集的工具之一。在本文中,我们仅着重于合成产生高质量的合法流量,而我们不会深入研究恶意交通。对于这项特定任务,最近的贡献利用了高级机器学习驱动的方法,特别是通过生成对抗网络(GAN)。但是,对GAN生成的数据的评估通常会忽略关键属性,例如协议依从性。我们的研究通过提出一组全面的指标来解决差距,以评估合成合法网络流量的质量。为了说明这些指标的价值,我们通过简单但有效的概率生成模型Bayesian Network(BN)将面向网络的gans进行了经验比较。根据我们提出的评估指标,基于BN的网络流量产生的表现优于基于ART GAN的对手。在我们的研究中,BN产生了更现实和有用的合成良性流量,并同时最大程度地减少了计算成本。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月6日。 https://doi.org/10.1101/2025.03.05.641676 doi:Biorxiv Preprint
摘要:基于黄单胞菌转录激活因子样效应 (TALE) 的 DNA 结合结构域 (DBD) 的设计效应是强大的序列特异性工具,因其在编辑基因组、转录组以及最近的表观基因组方面的特异性而享有盛誉。然而,组成 DBD 的 TALE 阵列的重复结构阻碍了它们作为基因合成产物的生成,并阻止了使用慢病毒载体 (LV)(一种广泛用于人类基因治疗的系统)递送基于 TALE 的基因。为了克服这些限制,我们旨在通过引入足够的多样性来嵌合编码 TALE-DBD 的 DNA 序列,以促进它们的基因合成和实现慢病毒递送。为此,我们用来自细菌伯克霍尔德菌的 TALE 样单元替换了 17 个黄单胞菌 TALE 重复序列中的 3 个。这与整个 DBD 中的广泛密码子变异和特定氨基酸替换相结合,以最大限度地提高重复序列内和重复序列间的变异性。我们证明,使用传统的 Golden Gate 克隆策略或基因合成可以轻松生成嵌合 TALE。此外,嵌合化使得使用慢病毒载体递送基于 TALE 的设计核酸酶、转录组和表观基因组编辑器成为可能。当以质粒 DNA 递送时,靶向 CCR5 和 CXCR4 基因座的嵌合 TALE 在人体细胞中显示出类似的活性。然而,基于 TALE 的转录激活因子的慢病毒递送仅在嵌合形式下才成功。同样,递送嵌合的 CXCR4 特异性表观基因组编辑器会导致内源性 CXCR4 表达快速沉默。总之,基于 TALE 的 DBD 的广泛密码子变异和嵌合使得设计 TALE 的生成和慢病毒递送变得简单,因此有利于这些工具的临床应用,以精确编辑基因组、转录组和表观基因组。
巴斯马蒂大米因其风味、香气和长粒而闻名于世。全球对它的需求不断增加,尤其是在亚洲。然而,其生产受到田间各种问题的威胁,导致农作物严重损失。其中一个主要问题是水稻白叶枯病菌 (Xoo) 引起的细菌性枯萎病。Xoo 通过激活易感基因(OsSWEET 家族基因)来劫持宿主机制,利用其内源性转录激活因子样效应物 (TALE)。TALE 在 OsSWEET 基因的启动子区具有效应物结合元件 (EBE)。在 Clade III SWEET 基因中发现的六个著名 TALE 中,有四个存在于 OsSWEET14 基因的启动子区。因此,针对 OsSWEET14 的启动子对于产生广谱抗性非常重要。为了设计出对细菌性枯萎病的抗性,我们通过靶向 OsSWEET14 启动子中存在的 4 个 EBE,在超级巴斯马蒂大米中建立了 CRISPR-Cas9 介导的基因组编辑。我们能够获得四个不同的超级巴斯马蒂品系(SB-E1、SB-E2、SB-E3 和 SB-E4),这些品系具有三个 TALE(AvrXa7、PthXo3 和 TalF)的 EBE。然后通过选择一种带有 AvrXa7 的当地分离的毒性 Xoo 菌株并感染超级巴斯马蒂,对编辑品系进行三次重复的抗细菌性枯萎病评估。AvrXa7 EBE 缺失的品系对 Xoo 菌株表现出抗性。因此,证实了编辑的 EBE 具有对 Xoo 菌株中存在的各自 TALE 的抗性。在这项研究中,获得了高达 9% 的编辑效率。我们的研究结果表明,可以利用 CRISPR-Cas9 来使本土品种对细菌性枯萎病产生抗性,以抵抗当地流行的 Xoo 菌株。