CAR T 细胞疗法彻底改变了我们治疗血液系统恶性肿瘤的方式。与此同时,微环境造成的额外生理和生物障碍限制了针对实体瘤的能力。近年来,基于基因组的细胞工程的进步使我们距离攻克实体瘤又近了一步。这一成功的先例还表明,我们需要能够创造性地修改和装备 CAR T 细胞以针对这些肿瘤。需要注意的是,增加细胞水平的基因修饰数量可能会损害编辑效率水平并导致基因组毒性。在这里,我们展示了我们可以使用我们最先进的 TALEN® 技术同时精确编辑多达四个基因位点,同时提供多个额外的有效载荷以提高 CAR T 细胞的功效和持久性。我们更进一步,使用包括 TALE 碱基编辑器在内的基因组工程技术组合来提高多重基因编辑的效率,同时保护基因组完整性。通过精心选择一系列基因和细胞工程方法,我们可以开发专注于未满足医疗需求的 CAR T 细胞,并具有高水平的基因编辑和靶向整合效率。我们还表明,TALEN® 介导的基因编辑的这种高效率不会导致不需要的位点的基因整合增加。此外,我们表明多重工程不会损害 CAR T 细胞功能,而 CAR T 细胞功能反而可以得到增强并显示出更好的抗肿瘤活性。因此,在保持基因组完整性的同时以更高的效率进行多重工程有可能产生高功能性的 CAR T 细胞,以在对抗实体肿瘤方面取得进展
佛罗里达州阿文图拉和纽约州纽约市,2021 年 11 月 18 日——Cytovia Therapeutics, Inc. 是一家生物制药公司,正在开发同种异体“现成”基因编辑的 iNK(源自 iPSC 的 NK 细胞)和源自诱导多能干细胞 (iPSC) 和 Flex-NK™ 细胞接合器多功能抗体的 CAR(嵌合抗原受体)自然杀伤 (NK) 细胞,以及 Cellectis(Euronext Growth:ALCLS - 纳斯达克股票代码:CLLS),一家临床阶段的基因编辑公司,利用其核心技术开发基于基因编辑的产品,在免疫肿瘤学领域拥有一系列同种异体嵌合抗原受体 (CAR-)T 细胞,在其他适应症中拥有基因编辑的造血干细胞,今天宣布他们已经扩大了 TALEN® 基因编辑的 iPSC 衍生的 NK 和 CAR-NK 细胞的合作,以包括新的Cytovia 的合资实体 CytoLynx Therapeutics 在中国的 CAR 目标和开发。
实验设计•使用黑色素瘤和肺,乳房,宫颈和卵巢癌的组织样品用于本研究。•在用于制造Iovance的TIL(Gen 2)的TIL快速扩张过程中,测试了使用PD-1TALEN®MRNA的TIL电穿孔的几种条件,以优化KO效率。•分别通过NGS和流式细胞仪在基因组和蛋白质水平上评估KO效率。•PD-1 KO对TIL计数/活性,表型和效应子功能的影响通过流式细胞仪和基于细胞的测定法进行了评估,包括混合淋巴细胞反应(MLR),重定向的杀伤测定法和单细胞多路复用细胞因子分析。•通过流式细胞术T细胞受体(TCR)-V(β)曲目分析通过荧光激活的细胞分类(FACS)分离细胞后,通过流式细胞术T细胞受体(TCR)-V(β)曲目分析来监测KO的分布。
• Single transfection makes transgenic cell lines and animal models • Effective in all mamalian genomes including human, rat and mouse • No cargo limit integrate 1 kb to over 100 kb • Reversible integrations • All-in-one inducible vector • Site-specific genome editing • Instant and foot-print free genome editing Applications • Knockout, knock-in and transgenic cell lines and animal models • Stem cell research: reprogramming, differentiation and selection • RNAi:细胞和动物模型中可诱导和可逆的基因敲低•可稳健蛋白质产生的细胞系•经过基因和细胞疗法,免疫疗法 *经过验证:XTNTM TALS经过序列验证并提供了预测试的表达载体,以实现最佳效率。*精确且可靠:XTNTM TALS将绑定并切割您的目标站点,否则我们将免费为您提供新的网站。*负担得起且灵活的:自定义XTNTM TALS负担得起,绝对没有使用限制。*速度:行业中最快的周转时间。访问我们的网页以获取有关Talens的更详细信息-http://www.gentaurpromo.com/talen_products/我们还提供: *转基因老鼠 *转基因服务 *细胞系和干细胞服务 *疾病模型 *基因表达 *Gene Expression Services on noce noce on:info@gentaur.com
摘要 使用位点特异性核酸酶(例如转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 9 (CRISPR-Cas9))进行基因组编辑是一种强大的作物育种技术。对于植物基因组编辑,基因组编辑试剂通常在植物细胞中从基因组内稳定整合的转基因中表达。这需要杂交过程从基因组中去除外来核苷酸以产生无效分离子。然而,在马铃薯等高度杂合的植物中,子代品系与亲本品种具有不同的农艺性状,不一定成为优良品系。农杆菌可以将 T-DNA 上的外源基因转移到植物细胞中。这既可用于稳定转化植物,也可用于在植物细胞中瞬时表达基因。在这里,我们用含有靶向固醇侧链还原酶 2 ( SSR2 ) 基因的 TALEN 表达载体的农杆菌感染马铃薯,并在没有选择的情况下再生了芽。我们获得了具有破坏的 SSR2 基因且没有转基因 TALEN 基因的再生系,这表明它们的破坏应该是由瞬时基因表达引起的。这里开发的使用农杆菌瞬时基因表达的策略(我们称之为农杆菌诱变)应该会加速使用基因组编辑技术来修改杂合植物基因组。
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 3 月 5 日发布。;https://doi.org/10.1101/2024.03.05.583596 doi:bioRxiv preprint
摘要 微小RNA(miRNA)是真核生物中起作用的20-24个核苷酸(nt)小RNA。miRNA的长度和序列不仅与miRNA的生物发生有关,而且对下游生理过程(如ta-siRNA产生)也很重要。为了研究这些作用,在成熟的miRNA序列中产生小突变是有益的。我们使用TALEN(转录激活因子样效应核酸酶)和成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在成熟miRNA序列中引入可遗传的碱基对突变。对于水稻,TALEN构建体针对五种不同的成熟miRNA序列构建,并产生可遗传的突变。在产生的突变体中,mir390 突变体表现出茎尖分生组织 (SAM) 的严重缺陷,这是一种无茎表型,可以通过野生型 MIR390 来挽救。小 RNA 测序表明 mir390 中的两个碱基对缺失会严重干扰 miR390 的生物合成。在拟南芥中,CRISPR/Cas9 介导的 miR160* 链编辑证实了 miRNA 的不对称结构不是二次 siRNA 产生的必要决定因素。使用双向导 RNA 的 CRISPR/Cas9 成功生成了具有片段缺失的 mir160a 无效突变体,其效率高于单向导 RNA。Col-0 和 Ler 背景下 miR160a 突变体的表型严重程度之间的差异凸显了 miR160a 在不同生态型中的不同作用。总的来说,我们证明 TALEN 和 CRISPR/Cas9 均能有效地修改 miRNA 前体结构、破坏 miRNA 加工并产生 miRNA 无效突变植物。
治疗感染人类免疫障碍病毒(HIV)的患者旨在防止病毒复制但无法消除病毒的疗法。尽管同种异体CCR5的移植32个纯合干细胞移植提供了治愈一些患者的治疗方法,但由于潜在的侧面影响,这种方法不被视为一般的治疗策略。相反,编码C-C趋化因子受体(CCR5)基因座的基因编辑(编码主要的HIV colecector)已显示出对CCR5-纤维化HIV菌株的抗性。在这里,提出了一种工程的转录激活剂样核酸酶(TALEN),可以在造血细胞中实现有效的CCR5编辑。将TALEN编码mRNA转移到原代CD4 + T细胞中后,高达89%的CCR5等位基因被破坏。基因分型证实了CCR5编辑的细胞的遗传稳定性,而全基因组的靶向分析确定了没有相关的诱变事件。在用CCR5-循环艾滋病毒挑战编辑的T细胞时,会观察到剂量依赖性的保护。功能评估表明,在增殖和它们在外源刺激时分泌细胞因子的能力方面,编辑和对照细胞之间没有显着差异。总而言之,一项高度活跃和特定的破坏CCR5已成功设计,为其在造血干细胞移植物中的临床应用铺平了道路。