西米翁·阿加托普洛斯 尤尔根·布里洛 马里奥·卡恰 奥利维尔·德泽勒斯 乔兰塔·扬扎克-拉什 乔治·卡普泰 李俊豪 松下泰志 哈维尔·纳西索 尤里·普莱瓦丘克 尤金·拉布金 娜塔莉亚·索布扎克 鲍里斯·斯特劳马尔 田中俊弘 法布里齐奥·瓦伦扎 乔安娜·沃耶沃达-布德卡
参考文献[1] J. Li,A。Ito,H。Yaguchi和Y. Maeda:工业机器人操作器的同时进行运动学校准,定位和映射(SKCLAM),Advanced Robotics,第1卷。33,编号23,pp。1225–1234,2019。[2] A. Ito,J。Li和Y. Maeda:使用棋盘格式的猛击综合运动学校准,Proc。2020 IEEE/sice int。sammp。系统集成(SII 2020),pp。551–556,2020。[3] Y. Tanaka,J。Li,A。Ito和Y. Maeda:用球形摄像机用于工业操纵器的猛击综合运动型校准,Proc。JSME Conf。 关于机器人技术和机电一体化2020(Robomech 2020),2p2-B05,2020(日语)。 [4] JSME Conf。 制造系统部门2021,pp。 77–78,2021(日语)。JSME Conf。关于机器人技术和机电一体化2020(Robomech 2020),2p2-B05,2020(日语)。[4]JSME Conf。 制造系统部门2021,pp。 77–78,2021(日语)。JSME Conf。制造系统部门2021,pp。77–78,2021(日语)。
• Prof. Y. Tanaka, Nagoya University, Japan [Relationship: Senior collaborator] Email: ytanaka@nuap.nagoya-u.ac.jp • Prof. A. M. Black-Schaffer [Relationship: Postdoc advisor] Email: annica.black-schaffer@physics.uu.se • Prof. R. Aguado, CSIC, Spain [Relationship: PhD thesis supervisor] Email: raguado@icmm.csic.es•斯洛伐克大学科尼乌斯大学(Comenius University)的J. Klaˇcka教授[关系:大师论文主管]
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
左图:AEP 的工作人员正在分析卫星数据。下图:JICA、JAXA 和 AEP 在日本-巴拉圭商业论坛上宣布将于 2024 年 5 月签署合作备忘录。照片从左至右依次为巴拉圭总统圣地亚哥·培尼亚、AEP 总裁奥斯瓦尔多·阿尔米隆·里维罗斯、JICA 总裁田中昭彦、JAXA 总裁山川浩和日本首相岸田文雄。
Arai Yasuyuki 1),Ohiki Marie 2,17,18),Ota Shuichi 3),Tanaka Masatsugu 4),Imada Kazunori 5),Fukuda Takahiro 6),Katayama Yuta 7),Katayama Yuta 7),Kanda Yoshiko) TOYOSHIMA TAKANORI 11),ISHIDA TAKASHI 12),UCHIDA HIROKI 12),BABA RYUICHI 12),UNO KEI 12),TAKAMI AKIYOSHI 13),ONUMA TAKAAKI 14),YANAGIDA MASAMITSU 15),YANAGIDA MASAMITSU 15),ATSUTA YUKO 2,17)
在2型糖尿病患者中干眼症综合征和糖尿病性视网膜病的患病率。BMC眼科。2008; 8(1):10。 29。 Shaw JE,Sicree RA,Zimmet PZ。 2010年和2030年糖尿病的预期的全球估计值。 糖尿病临床实践。 2010; 87(1):4-14。 30。 Perros P,McCrimmon RJ,Shaw G,Frier BM。 糖尿病患者甲状腺功能障碍的频率:年度筛查的值。 糖尿病药物。 1995; 12(7):622-627。 31。 Suzuki Y,Nanno M,Gemma R,Tanaka I,Taminato T,Yoshimi T.糖尿病患者甲状腺激素异常的机理。 Nihon Naibunpi Gakkai Zasshi。 1994; 70(4):465-470。 32。 Vij V,Chitnis P,Gupta VK。 评估之间甲状腺功能障碍2008; 8(1):10。29。Shaw JE,Sicree RA,Zimmet PZ。2010年和2030年糖尿病的预期的全球估计值。糖尿病临床实践。2010; 87(1):4-14。30。Perros P,McCrimmon RJ,Shaw G,Frier BM。糖尿病患者甲状腺功能障碍的频率:年度筛查的值。糖尿病药物。1995; 12(7):622-627。 31。 Suzuki Y,Nanno M,Gemma R,Tanaka I,Taminato T,Yoshimi T.糖尿病患者甲状腺激素异常的机理。 Nihon Naibunpi Gakkai Zasshi。 1994; 70(4):465-470。 32。 Vij V,Chitnis P,Gupta VK。 评估之间甲状腺功能障碍1995; 12(7):622-627。31。Suzuki Y,Nanno M,Gemma R,Tanaka I,Taminato T,Yoshimi T.糖尿病患者甲状腺激素异常的机理。Nihon Naibunpi Gakkai Zasshi。1994; 70(4):465-470。 32。 Vij V,Chitnis P,Gupta VK。 评估之间甲状腺功能障碍1994; 70(4):465-470。32。Vij V,Chitnis P,Gupta VK。 评估之间甲状腺功能障碍Vij V,Chitnis P,Gupta VK。评估
解决 QKD 中符号同步的一个直观方法是使用成对光纤通过不同信道传输参考信号和量子数据信号。然而,温度会导致成对光纤之间产生延迟,从而导致同步精度下降 [Tanaka et al. 2008]。时分复用 (TDM) 方案克服了这个问题,其中同步脉冲从量子脉冲中滞后传输。然而,TDM 方案带来了其他问题,例如比特率限制,因为这些技术要求量子信号和参考信号之间有足够长的时间间隔 [Tanaka et al. 2008]。最近,已经提出了不同的 QKD 时钟恢复算法,避免使用额外的经典参考信号。在 [Pljonkin and Rumyantsev 2016] 中,提出了一种同步算法,其中时间帧被划分为更小的时间窗口,同步时间为 788 。 6 ms,同步失败概率为0.01%。在[Rumyantsev and Rudinskiy 2017]中,作者提出了一种不包括时间帧划分的算法,提供更快的同步时间3.216 ms,错误概率为0.0043%。然而,后者只能应用于站间距离不超过几十公里的QKD系统,而前者可以应用于数百公里的QKD系统。另一方面,
摘要:在美国南加州至阿拉斯加的 18 个地点研究了红海胆 Strongylocentrotus franciscanus 的生长和存活率。生长率通过四环素标记确定,并使用 Tanaka 生长方程建模。存活率通过大小频率分布和生长参数估算。使用对数线性分析,确定生长转变在各个地点有所不同(p G 0.001),但南北没有差异(p > 0.80)。Tanaka 生长函数的参数是针对所有数据组合(N = 2714)估算的。地点残差没有显示纬度趋势,因此结果与对数线性分析一致。相对颌骨(半金字塔)大小,以颌骨长度与测试直径的函数的异体生长指数 β 来衡量,已被证明对可用食物有反应。对于红海胆,β 与生长呈负相关,但相对颌骨大小与纬度无相关性,这表明食物供应不存在纬度差异。与年增长率相反,年存活率与纬度相关,且在北部更高。从北加州到阿拉斯加,平均年存活概率为 0.93 年 - ',在南加州为 0.77 年 - '。存活率随纬度变化的可能原因是疾病和与温度相关的压力。本文为制定有关红海胆南北种群大小和存活率差异的假设提供了基础,并可能为其他具有浮游幼虫的海洋物种提供假设。