下面我们将证明 TCDC 方法成功应用于 2-炔基烯酮 1 与硝酮 2 的对映选择性串联反应,其中硝酮表现为亲核 1,3-偶极子,得到形式上的 [3+3] 环加成产物 3(方案 1b)。[14] 此外,我们证明这些串联环化/[3+3] 环加成可以作为多组分反应进行,通过羟胺 4 和醛 5 原位形成硝酮。该方法适用于广泛的芳基和烷基取代底物,克服了此类对映选择性反应的一些当前局限性。[14] 该方法依赖于一种新的 CPA-Phos 型配体,在有和没有活化银盐的情况下均可操作。DFT 计算提供了有关新 Au(I) 复合物在此反应中的行为的见解。
将肽序列与串联质谱匹配是自下而上的蛋白质组学不可或缺的部分。据估计,嵌合光谱占 DDA 数据的 40% 以上 [2],这违反了一个光谱代表一个肽的假设。一些搜索引擎允许对几个可能的前体进行多遍搜索或重复嵌合光谱,但很少有搜索引擎考虑到(同量异位素)碎片离子的测量强度可能是多个肽的总和。这会引入错误并使有价值的信息未被利用,导致肽鉴定数量远远少于数据中包含的数量。在这里,我们描述了 CHIMERYS,这是一种基于 AI 的新型搜索算法,它从头开始重新思考串联质谱的分析。与传统搜索算法相比,它通常将肽鉴定数量增加一倍,鉴定率达到 80% 以上。
继第 1 版《新兴光伏 (PV) 报告》发布后,该报告总结了自 2020 年 8 月以来学术期刊上的同行评审文章中所报道的新兴光伏器件在各种新兴光伏研究课题中性能的最佳成就。提供了更新的图表、表格和分析,其中包含多个性能参数,例如功率转换效率、开路电压、短路电流密度、填充因子、光利用效率和稳定性测试能量产量。这些参数表示为每种技术和应用的光伏带隙能量和平均可见光透射率的函数,并使用详细的平衡效率极限等进行透视。第 2 版《新兴光伏报告》将范围扩大到串联太阳能电池,并介绍了当前各种材料组合的串联太阳能电池性能的最新进展。
已经开发了创造性的方法来实现此属性。[1,2]在许多早期的概念验证研究中,BSAB是通过使用双功能交联试剂对两种不同的IgG或Fab进行化学交联产生的,这些试剂与抗体的硫醇和原发胺群特异性反应。[3,4]尽管以这种方式制备的几个BSAB已促进了临床试验,但[5-7]当前开发的绝大多数BSAB是通过重组抗体工程产生的。超过100种不同格式的多特异性抗体(MSAB)是基于免疫球蛋白G(IgG)或其成分进行了设计的(在参考文献[1]),有些包含FC,而另一些则没有。众所周知的无FC格式示例是串联单链可变片段(SCFV)[8]和串联纳米词。[9]中,由串联抗CD19和抗CD3 SCFV(blinatumomomab)组成的双特异性T细胞Endager(咬)是第一个FDA认可的BSAB,用于治疗急性淋巴细胞性白血病。[10,11]含有FC的天然IgG是对称的。向IgG引入双特异性或不对称性能,已经开发了各种方法来有利于异二聚体重型链配对。一些突出的例子是旋钮孔,[12]基于结构性的诱变,[13]和骨膜转向[14],这些诱变有利于异二聚体或脱离FC的同构化。此外,将旋钮孔和附加IgG的两个臂之一与另一个SCFV或FAB相加的一个允许组装Tristexific抗体。[15]
- 海报将被制作出来,突出显示每个营地开放的不同选项 - SMS系统可用于向每个营地/社区发送信息 - 广告他们如何参与其中或要求他们对不同的选择进行投票 - 红十字会投诉和问题线将在营地中广告,人们可以在这里呼吁并提出关注。通过此线路收集的信息将与Watsan共享 - 可以使用交互式语音识别(IVR)免费电话线来上传特定于每个营地/社区的记录的信息,并且可以在营地中宣传。The IVR can also be used to run detailed surveys, where participants press buttons to indicate their answers, so tackling any literacy and size constraints of the SMS - Sound trucks can be used to spread messages around camps and could operate in tandem with community mobilisation teams – for example, a sound truck could play recorded information and then community teams could hold a Q&A on what people have heard.
这是“主街四点方法”的其中一点,旨在全面、逐步振兴市中心和商业区。这一点应与其他“主街四点”同时实施,因为每个点都相互配合,以逐步实现市中心发展。
基于金属卤化物钙钛矿的串联太阳能电池有望实现超越单结太阳能电池理论极限的功率转换效率。然而,克服宽带隙钙钛矿太阳能电池中存在的显著开路电压不足仍然是实现高效稳定的钙钛矿串联电池的主要障碍。本文报道了一种通过氯化物添加剂设计钙钛矿结晶途径来克服 1.8 eV 钙钛矿太阳能电池挑战的整体方法。结合使用自组装单层作为空穴传输层,实现了 1.25 V 的开路电压和 17.0% 的功率转换效率。阐明了甲基氯化铵添加的关键作用,即促进富含氯化物的中间相的生长,从而引导所需立方钙钛矿相的结晶并诱导更有效的卤化物均质化。形成的 1.8 eV 钙钛矿表现出抑制卤化物偏析和改善的光电性能。
轮换项目名称 使用 100 万个可诱导 DNA 条形码进行原位谱系追踪实验室主任 (PI) 姓名 Jamie Blundell 第二位指导老师(如适用) N/A 项目早期检测指导老师电子邮件 jrb75@cam.ac.uk 实验室位置 哈奇森 MRC 研究中心项目概要目的和目标维持血液、皮肤、肠道和其他组织的干细胞处于不断更新的状态,从而积累基因改变,其中一些导致克隆扩增和癌症 [1]。理解这一点需要能够测量组织维持期间发生的群体动态。在此,我们建议构建一个原位谱系追踪工具,该工具可以诱导生成数百万个 DNA 条形码组合,从而允许人们使用下一代测序以精确度并行追踪数百万个细胞谱系。与以前的半定量方法 [2] 不同,这项技术将能够定量追踪与体内组织维持相关的克隆动态,并深入了解如何实现体内平衡以及它在癌症早期阶段如何崩溃。我们之前在酿酒酵母中的工作已经证明,基于 cre-lox 系统的位点特异性 DNA 条形码和谱系动态的定量追踪可用于深入了解突变如何在大量细胞群体中产生、扩展和竞争 [3]。我们与长期合作伙伴 Sasha Levy 进一步开发了这项技术,现在可以原位生成条形码多样性,而无需转化质粒文库。这项改进的技术将利用 3 个串联 loxP“着陆垫”,每个“着陆垫”(在 Cre 诱导后)可以不可逆地整合存储在基因组其他地方的三个独立串联阵列中的约 100 个独特条形码序列中的一个。对于这个 MRes 轮换项目,我们计划扩大这项技术的规模,以在酵母中稳健地生成 100 万个独特的条形码组合。这将证明该技术能够以单细胞精度追踪体内细胞谱系,从而为干细胞生物学和癌症发病中的主要未解问题提供参考。实验计划 学生将首先构建由 loxP 位点分隔的约 100 个条形码组成的长串联阵列构建体,并使用标准同源重组将此构建体整合到已包含 cre-lox 着陆垫的酵母菌株的基因组中。然后,学生将研究此构建体可诱导的条形码多样性如何取决于串联阵列的诱导条件和基因组位置。优化后,学生将整合另外两个串联阵列,并尝试实现超过 100 万个独特条形码的多样性,将使用定制设计的 2 步 PCR 协议进行仔细量化,该协议使用唯一分子标识符 (UMI) 来标记单个 DNA 分子。