勃起功能障碍(ED)被定义为阴茎持续无法实现和/或保持勃起的性生活,是泌尿科中最常见的疾病之一(1)。尽管Ed不会对生命构成威胁,但它对社会构成了重大的安全隐患。 它不仅会影响患者的身心健康,而且会给性伴侣带来极大的困扰,从而导致患者及其伴侣的生活质量下降,家庭中的不和谐,更认真地,工作生产力的下降,家庭暴力的提高以及医疗负担的增加。 与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。 先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。 因此,ED和心血管疾病具有共同的危险因素。 脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。 烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。 有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。 几个荟萃分析也显示了相似的结论(11,12)。 近年来,药物靶标MR分析已成为有效的工具。尽管Ed不会对生命构成威胁,但它对社会构成了重大的安全隐患。它不仅会影响患者的身心健康,而且会给性伴侣带来极大的困扰,从而导致患者及其伴侣的生活质量下降,家庭中的不和谐,更认真地,工作生产力的下降,家庭暴力的提高以及医疗负担的增加。与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。 先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。 因此,ED和心血管疾病具有共同的危险因素。 脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。 烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。 有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。 几个荟萃分析也显示了相似的结论(11,12)。 近年来,药物靶标MR分析已成为有效的工具。与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。因此,ED和心血管疾病具有共同的危险因素。脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。几个荟萃分析也显示了相似的结论(11,12)。近年来,药物靶标MR分析已成为有效的工具。但是,一些学者发现,高脂血症的患者在使用降低脂质药物期间可能会降低睾丸激素水平,这反过来又可能导致ED发生。此外,一些研究表明他汀类药物可能通过影响自主神经功能或心理因素而间接导致ED的发生(13)。随机对照试验(RCT)是确定药物效率和不良反应的标准方法。但是,目前缺乏降脂药物和ED之间的大规模随机对照试验。降低脂质药物对ED和性激素水平的发生的影响尚不清楚,需要进一步探索。随着全基因组关联研究(GWAS)的日益普及,门德尔随机化(MR)可能是用于解决问题的RCT研究的有效替代方法。由于遗传变异(等位基因)是在减数分裂过程中随机分配的,因此MR研究的参与者根据等位基因的存在“随机”。这类似于随机对照试验,该试验将参与者随机分配到实验治疗组或对照组(14、15)。因此,MR分析的优点是,与其他研究方法相比,MR分析不易受到混杂因素的影响。它用于推断针对蛋白质编码基因,拮抗剂,激动剂或抑制剂对疾病风险的药物的影响(16)。该工具对破译药物治疗的潜力和促进药物开发非常有帮助。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
脱发Areata(AA)是一种常见的自身免疫性疾病,在美国的患病率为2%(1)。持续的AA及其变体可导致头皮脱发显着,从而对患者的生活质量和心理健康产生不利影响(2)。目前,没有可用于永久AA治疗的药物。临床药物方案主要依赖于衰老或全身性皮质类固醇,米诺地尔和甲氨蝶呤。然而,患有中度至重度脱发的患者(盐得分≥50%),尤其是那些全球性脱发或全球性脱发的患者,需要更有效,耐受性更好和更安全的替代药物(3-5)。aa是一种影响毛囊的退化性疾病,其特征是病变卵泡周围的炎性细胞进行炎症。临床表现包括头皮上的突然,圆形的片状脱发,以及其他区域,例如眉毛,睫毛,胡须和身体毛发,以及虚弱的纤维/脚趾指甲的抑郁症(6)。一些口服JAK抑制剂(JAKI)已得到FDA的批准,用于治疗自身免疫性疾病,例如类风湿关节炎,牛皮癣和过敏性皮肤炎;但是,截至2022年6月,只有Bariticinib获得了FDA的批准(7 - 10)。p-pifer的新口服Jaki PF-06651600和Concert Pharmaceuticals的CTP-543和局部ATI-502已从FDA获得“快速轨道”,并完成了III期RCT,以生成AA中未来Jaki应用程序的效率和安全数据。需要进行其他研究来确定其有效性和安全性。为此,我们对已发表的RCT和OSS进行了系统的审查和元分析,以评估Jaki在AA治疗中的有效性和安全性。
摘要。人类计算机的交互已从命令行演变为图形,直至有形的用户界面(TUI)。tuis代表了将物理对象纳入数字环境中的新范式,以便为用户提供更丰富,更自然和直观的互动手段。本文回顾了TUIS在认知人体工程学,教育和行业中的应用,并特别强调了TUI在减少认知负荷以及改善保留率和增强解决问题的行为方面可能产生的潜在影响。它涵盖了TUI认知益处的各种案例研究,分布式和体现的认知,可伸缩性和可访问性问题的框架,减少技术障碍以及用户不情愿的方法以及TUI与IoT合并的方式。作者还讨论了TUI如何在智能环境中的网络和控制方面看到巨大的改进。从上述内容中,尽管Tuis承诺与常规GUI有关的巨大好处,但在不同应用程序中的全面利用要求解决成本,适应性和包容性的广泛使用。
最初成立于2011年,CrowdTangle的创建是为了通过与Facebook集成来帮助非营利组织建立社交网络,但它变成了一种工具,使人们能够看到什么故事在平台上最快传播。Facebook在2016年购买了该平台,使其免费并向包括人权组织,记者,事实检查员和独立研究人员提供给数千名新用户,并将其变成了整个社交媒体行业实时平台透明度的主要例子。crowdangle此后已被用来识别全球,尤其是全球多数派的虚假信息来源;在2020年美国大选之前纠正有关政治言论的分布的记录,并展示了如何使用该平台组织1月6日的美国国会大厦的袭击;并证明有关COVID-19的虚假叙述是如何传播的。,但近年来,元开始将资源从人群中转移,促使他们猜测他们会关闭平台。
必须加速绿色和可再生能源的发展才能达到零碳排放。代表性的可再生能源(如风能和太阳能)正在波动,并且容易受到多个环境参数的影响[1]。为了应对这些挑战,大规模储能系统的开发是必不可少的,以构建能量周期。全范数氧化还原流量电池(VRFB)由于其高能量效率,足够的安全性和长期使用寿命而脱颖而出[2]。然而,增强功率密度仍然是进一步提高VRFB经济可行性的关键目标。在各种研究方向上,越来越多的研究人员着重于改善电极的电化学性能。VRFB系统的功率密度从根本上取决于在电极 - 电解质界面上发生的氧化还原反应的速率。电极的微结构和表面特征起着确定反应速率的关键作用。通过改善电极的电化学性能,可以显着提高VRFB系统的功率密度[3]。因此,必须开发具有较高催化活性和大特定表面积的新电极材料。
摘要——在脑机接口(BCI)领域,学习模型通常针对每个受试者和每个会话分别进行训练,因为不同会话和不同受试者之间的数据并不一致。这里我们提出了一种小组学习的方法,即在联合调整多个主题和/或课程之后,使用它们同时进行学习。我们的方法受到盲源分离文献的启发。作为演示,我们在 22 个受试者的数据集上训练单一学习模型,并应用该组模型对所有受试者进行类似地预测测试数据。与传统的单独训练测试设置相比,我们观察到平均精度显著提高了 6.8 个点。我们的方法是通用的,可以用于任何应用程序。它还可用于训练需要大量数据的学习模型,例如深度神经网络。
注意:请注意,本文件可能不是作品的记录版本(即已发布的版本)。作者手稿版本(提交同行评审或同行评审后接受出版)可以通过缺少出版商品牌和/或排版外观来识别。如果有任何疑问,请参考已发布的来源。
受试者之间和会话之间的脑电图 (EEG) 统计差异是脑机接口 (BCI) 领域面临的一个常见问题。这种差异阻碍了预先训练的机器学习模型的使用,并且需要对每个新会话进行校准。本文介绍了一种处理这种差异性的新迁移学习 (TL) 方法。该方法旨在通过在正定矩阵黎曼流形的切线空间中将一个受试者的 EEG 数据与另一个受试者对齐,来减少校准时间甚至提高 BCI 系统的准确性。我们在 18 个 BCI 数据库上测试了该方法,这些数据库总共包含 349 名受试者,属于三个 BCI 范式,即事件相关电位 (ERP)、运动想象 (MI) 和稳态视觉诱发电位 (SSVEP)。我们使用支持向量分类器进行特征分类。结果表明,与传统的训练-测试流程相比,在 ERP 范式中,分类准确度显著提高,而对于 MI 和 SSVEP 范式,性能均未下降。与之前发布的黎曼方法黎曼普鲁克勒斯分析 (RPA) 相比,总体准确度提高了 2.7%。有趣的是,切线空间对齐具有处理具有不同通道数的数据集的迁移学习的内在能力,自然适用于数据集间的迁移学习。
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。