Xue Liu 1 , Jiajie Pei 1, 2 , Zehua Hu 1 , Weijie Zhao 1 , Sheng Liu 1 , Mohamed-Raouf Amara 1 , Kenji Watanabe 3 , Takashi Taniguchi 4 , Han Zhang 2 , Qihua Xiong 1, 5 * 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological大学,新加坡637371,新加坡。2 2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。通过使用微拉曼和光致发光光谱的组合,我们证明了调制起源于同时操纵电荷和/或在每个两个相邻层之间的能量转移。关键字:2D材料,范德华异质结构,拉曼和光致发光光谱,层间电荷和能量传递,带工程
[1] A. F. Andreev,Sov。物理。Jetp 19,1228(1964)。[2] I. O.单击,Sov。物理。JETP 30,944(1969)。[3] K. K. likhare,修订版模式。物理。51,101(1979)。 [4] F. Pientka,A。Berg。 修订版 x 7,021032(2017)。 M. Hell,M。Leijnse和K. Flenberg,物理。 修订版 Lett。 118,10771(2017)。 [6] T. Hsieh和L. Fu,物理。 修订版 Lett。 108,10705(2012)。 [7] A. V. Shumeiko,Ee N. Bratus',J。Lantz和G. Wendin,Phys。 修订版 Lett。 90,087003(2003)。 [8] C. 1月和Al。 ,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。51,101(1979)。[4] F. Pientka,A。Berg。修订版x 7,021032(2017)。M. Hell,M。Leijnse和K. Flenberg,物理。修订版Lett。 118,10771(2017)。 [6] T. Hsieh和L. Fu,物理。 修订版 Lett。 108,10705(2012)。 [7] A. V. Shumeiko,Ee N. Bratus',J。Lantz和G. Wendin,Phys。 修订版 Lett。 90,087003(2003)。 [8] C. 1月和Al。 ,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。Lett。118,10771(2017)。 [6] T. Hsieh和L. Fu,物理。 修订版 Lett。 108,10705(2012)。 [7] A. V. Shumeiko,Ee N. Bratus',J。Lantz和G. Wendin,Phys。 修订版 Lett。 90,087003(2003)。 [8] C. 1月和Al。 ,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。118,10771(2017)。[6] T. Hsieh和L. Fu,物理。修订版Lett。 108,10705(2012)。 [7] A. V. Shumeiko,Ee N. Bratus',J。Lantz和G. Wendin,Phys。 修订版 Lett。 90,087003(2003)。 [8] C. 1月和Al。 ,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。Lett。108,10705(2012)。[7] A. V. Shumeiko,Ee N. Bratus',J。Lantz和G. Wendin,Phys。修订版Lett。 90,087003(2003)。 [8] C. 1月和Al。 ,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。Lett。90,087003(2003)。[8] C. 1月和Al。,Science 349,1199(2015)。 [9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。 [10] J. J. A. A. Baselmans,A。F. M. [11] N. M. 修订版 Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。,Science 349,1199(2015)。[9] L. Bretheau,ç。他们的。 Girit,H。Postive,D。Esteve和C. Urban,Natural 499,312(2013)。[10] J. J.A. A. Baselmans,A。F. M.[11] N. M.修订版Lett。 90,226806(2003)。 [12] E. Strambini,St.Dambrosis,F。Vischi,F。S. 纳米诺。 11,1055(2016)。 [13] G.-H.李和艾尔。 ,自然586,42(2020)。 [14] E. D. Walsh和Al。 ,科学372,409(2021)。 [15] I. V. Bourse和Al。 ,物理。 修订版 Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。Lett。90,226806(2003)。[12] E. Strambini,St.Dambrosis,F。Vischi,F。S.纳米诺。11,1055(2016)。[13] G.-H.李和艾尔。,自然586,42(2020)。[14] E. D. Walsh和Al。,科学372,409(2021)。[15] I. V. Bourse和Al。,物理。修订版Lett。 117,237002(2016)。 [16] F. Nichele和Al。 ,物理。Lett。117,237002(2016)。 [16] F. Nichele和Al。 ,物理。117,237002(2016)。[16] F. Nichele和Al。,物理。修订版Lett。 124,226801(2020)。 JD [17] J. D. Pill,C。H。L. Quay,P。Emphine,C。Bena,A。L。Yeyati和P. Joyez,Nat。 物理。 6,965(2010)。 [18] W. Chang,V。E. Moucheryan,S。 修订版 Lett。 110,217005(2013)。 [19] D. J. Van Woercom和Al。 ,nat。 物理。 13,876(2017)。 [20] A. Society,A。Danileko,D。Sabon,K。Krisjuhan,T。Lindanman,C。Thomas,M。J. J. J. J. J. J. J. M. Marcus,物理。 修订版 B 106,L241301(2022)。 [21] A. 修订版 b 106,L161301(2022)。 [22] L. Bretheau,J。Wang。 物理。 13,756(2017)。 J. I.-J。 K. Watanabe,T。T. T. T. T. T. T. T. T. 修订版 b 98,121411(r)(2018)。 [24] S. Park和Al。 ,自然603,421(2022)。 [25] Chone,C。Chalve,PM Goldbart和N. Mason,Nat。 物理。 7,386(2011)。 [26] L. Tosi,C。Metzger,M。F。F. Goffman,C。Urbin,H。Pothier,St.Park,A。 修订版 x 9,011010(2019)。 [27] P. Zellekens,R。S. 物理。Lett。124,226801(2020)。JD [17] J. D. Pill,C。H。L. Quay,P。Emphine,C。Bena,A。L。Yeyati和P. Joyez,Nat。物理。6,965(2010)。[18] W. Chang,V。E. Moucheryan,S。修订版Lett。 110,217005(2013)。 [19] D. J. Van Woercom和Al。 ,nat。 物理。 13,876(2017)。 [20] A. Society,A。Danileko,D。Sabon,K。Krisjuhan,T。Lindanman,C。Thomas,M。J. J. J. J. J. J. J. M. Marcus,物理。 修订版 B 106,L241301(2022)。 [21] A. 修订版 b 106,L161301(2022)。 [22] L. Bretheau,J。Wang。 物理。 13,756(2017)。 J. I.-J。 K. Watanabe,T。T. T. T. T. T. T. T. T. 修订版 b 98,121411(r)(2018)。 [24] S. Park和Al。 ,自然603,421(2022)。 [25] Chone,C。Chalve,PM Goldbart和N. Mason,Nat。 物理。 7,386(2011)。 [26] L. Tosi,C。Metzger,M。F。F. Goffman,C。Urbin,H。Pothier,St.Park,A。 修订版 x 9,011010(2019)。 [27] P. Zellekens,R。S. 物理。Lett。110,217005(2013)。 [19] D. J. Van Woercom和Al。 ,nat。 物理。 13,876(2017)。 [20] A. Society,A。Danileko,D。Sabon,K。Krisjuhan,T。Lindanman,C。Thomas,M。J. J. J. J. J. J. J. M. Marcus,物理。 修订版 B 106,L241301(2022)。 [21] A. 修订版 b 106,L161301(2022)。 [22] L. Bretheau,J。Wang。 物理。 13,756(2017)。 J. I.-J。 K. Watanabe,T。T. T. T. T. T. T. T. T. 修订版 b 98,121411(r)(2018)。 [24] S. Park和Al。 ,自然603,421(2022)。 [25] Chone,C。Chalve,PM Goldbart和N. Mason,Nat。 物理。 7,386(2011)。 [26] L. Tosi,C。Metzger,M。F。F. Goffman,C。Urbin,H。Pothier,St.Park,A。 修订版 x 9,011010(2019)。 [27] P. Zellekens,R。S. 物理。110,217005(2013)。[19] D. J. Van Woercom和Al。,nat。物理。13,876(2017)。 [20] A. Society,A。Danileko,D。Sabon,K。Krisjuhan,T。Lindanman,C。Thomas,M。J. J. J. J. J. J. J. M. Marcus,物理。 修订版 B 106,L241301(2022)。 [21] A. 修订版 b 106,L161301(2022)。 [22] L. Bretheau,J。Wang。 物理。 13,756(2017)。 J. I.-J。 K. Watanabe,T。T. T. T. T. T. T. T. T. 修订版 b 98,121411(r)(2018)。 [24] S. Park和Al。 ,自然603,421(2022)。 [25] Chone,C。Chalve,PM Goldbart和N. Mason,Nat。 物理。 7,386(2011)。 [26] L. Tosi,C。Metzger,M。F。F. Goffman,C。Urbin,H。Pothier,St.Park,A。 修订版 x 9,011010(2019)。 [27] P. Zellekens,R。S. 物理。13,876(2017)。[20] A. Society,A。Danileko,D。Sabon,K。Krisjuhan,T。Lindanman,C。Thomas,M。J. J. J. J. J. J. J. M. Marcus,物理。修订版B 106,L241301(2022)。[21] A.修订版b 106,L161301(2022)。[22] L. Bretheau,J。Wang。物理。13,756(2017)。J. I.-J。K. Watanabe,T。T. T. T. T. T. T. T. T.修订版b 98,121411(r)(2018)。[24] S. Park和Al。,自然603,421(2022)。[25] Chone,C。Chalve,PM Goldbart和N. Mason,Nat。物理。7,386(2011)。[26] L. Tosi,C。Metzger,M。F。F. Goffman,C。Urbin,H。Pothier,St.Park,A。修订版x 9,011010(2019)。[27] P. Zellekens,R。S.物理。5,267(2022)。M. Edward和K. Mikito,众议员Prog。物理。76,056503(2013)。C. W. J. Benecker,物理。修订版Lett。 67,3836(1991)。Lett。67,3836(1991)。67,3836(1991)。
▪ Seok-Kyun Son, Makars Šiškins, Ciaran Mullan, Jun Yin, Vasyl G Kravets, Aleksey Kozikov, Servet Ozdemir, Manal Alhazmi, Matthew Holwill, Kenji Watanabe, Takashi Taniguchi, Davit Ghazaryan, Kostya S Novoselov, Vladimir I Fal'ko & Artem Mishchenko,石墨烯热电子灯泡:空气中HBN封装的石墨烯的白炽灯。2D材料2017,5(1)。 ▪YU。 N. Khanin, E. E. Vdovin, M. V. Grigor'ev, O. Makarovsky, Manal Alhazmi, S. V. Morozov, A. Mishchenko & K. S. Novoselov,Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene. JETP Letters 2019,109(7):482-489。 ▪M Alhazmi,Om Ramahi,M Irannejad,A Brzezinski,M Yavuz等人,“ NSTOA-13-RA-108金属绝绝diodes中金属电极在金属 - 金属金属二极管中变化的影响的比较与多介质层与多介质层与多介质层的效果” ,卷。 2,不。 2,pp。 1014,2014。 ▪f Aydinoglu,M Alhazmi,B Cui,O Ramahi,M Irannejad等人,“使用多个绝缘体层的高性能金属 - 绝缘子金属二极管”,Austin J Nanomed Nanotechnol。 1,卷。 3,不。 2014年。 ▪M。Alhazmi,M。Yavuz和B. Cui,使用多层聚苯乙烯电子束抵抗,第57届电子,离子和光子光束技术和纳米制作(EIPBN)的对比曲线工程,2013年5月。 ▪C。Con,M。Alhazmi,M。Yavuz和B. Cui,冻结冻干,以减少电子束抵抗倒塌,2013年9月在伦敦举行的MNE会议,2013年9月。。2D材料2017,5(1)。▪YU。N. Khanin, E. E. Vdovin, M. V. Grigor'ev, O. Makarovsky, Manal Alhazmi, S. V. Morozov, A. Mishchenko & K. S. Novoselov,Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene.JETP Letters 2019,109(7):482-489。▪M Alhazmi,Om Ramahi,M Irannejad,A Brzezinski,M Yavuz等人,“ NSTOA-13-RA-108金属绝绝diodes中金属电极在金属 - 金属金属二极管中变化的影响的比较与多介质层与多介质层与多介质层的效果”,卷。2,不。2,pp。1014,2014。▪f Aydinoglu,M Alhazmi,B Cui,O Ramahi,M Irannejad等人,“使用多个绝缘体层的高性能金属 - 绝缘子金属二极管”,Austin J Nanomed Nanotechnol。1,卷。3,不。2014年。▪M。Alhazmi,M。Yavuz和B. Cui,使用多层聚苯乙烯电子束抵抗,第57届电子,离子和光子光束技术和纳米制作(EIPBN)的对比曲线工程,2013年5月。▪C。Con,M。Alhazmi,M。Yavuz和B. Cui,冻结冻干,以减少电子束抵抗倒塌,2013年9月在伦敦举行的MNE会议,2013年9月。▪ F. Aydinoglu, M. Alhazmi, S. Alqarni, B. Cui, O. M. Ramahi and M. Yavuz, “Design and Fabrication of Pt-Al2o3-Al Metal- Insulator-Metal Diode,” accepted for publication in the 24th Canadian Congress of Applied Mechanics (CANCAM 2013), Saskatoon, Saskatchewan, Canada, June 2-6,2013。
凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。2。当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。3。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。4。当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。6。东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。<东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。9。日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。11。凯奥大学机械工程系,3-14-1 Hiyoshi,Kohoku-ku,横滨,卡纳那川223-8522,日本计算机分子设计实验室,Riken Biiken Biosystems Dynamerss Dynamics Research(BDR),Osaka 565--0874,日本10。人类生物学 - 微生物 - 量词研究中心(WPI-BIO2Q),Keio University,东京160-8582,日本#这些作者贡献了同样的贡献。12应该解决信件:铃木穆萨塔克(Masataka Suzuki)和凯奥·萨萨贝(Jumpei Sasabe)药理学系,凯奥大学医学院(Keio University of Medicine of Medicine of Medicine of Medicine of Medicine of School of Medicine of School of School of Shinjuku-ku),东京160-8582日本。电话: +81-3-5363-3750。传真: +81-3-3359-8889。电子邮件:masataka.s@keio.jp; sasabe@keio.jp电子邮件:masataka.s@keio.jp; sasabe@keio.jp
其他贡献来自:阿卜杜拉·阿布里(Abdullah al-Abri),埃米尔·贝林·布尔戈涅(Emile Belin-Bourgogne),法国D'Agrain,David Fischer,Paul Grimal,Marco iarci,Yun Yun Young Kim,Alice Latella,Carson Maconga,Carson Maconga,Ana Morgado,Ana Morgado,Rebecca Ruff和Natalia Triunfo。
对 MIRAGE 综合征进行基础研究以开发治疗策略 MIRAGE 综合征是一种最近发现的遗传性疾病,其特点是六个主要特征,包括骨髓发育不良、感染、生长受限、肾上腺发育不全、生殖器表型和肠病。“MIRAGE”是这六个特征的首字母缩写。MIRAGE 综合征是由 SAMD9 突变引起的,该突变编码一种功能未知的蛋白质。MIRAGE 综合征是一种罕见/难治性疾病。日本仅发现 11 名患者。MIRAGE 综合征是一种危及生命的疾病,事实上,超过一半的患者在 2 岁前死亡。我们开展“对 MIRAGE 综合征进行基础研究以开发治疗策略”的研究旨在获得有关 MIRAGE 综合征的基本知识和见解,从而有助于开发治疗方法。成海聪(国立儿童保健与发育研究所分子内分泌科主任)建立了 MIRAGE 综合征的 HEK293 细胞模型,研究人员可以通过该模型重现患者细胞的生长受限情况。利用该模型,他测试了大约 1,500 种之前鉴定的小化合物,以寻找治疗 MIRAGE 综合征的潜在药物。然而,在初步筛选中尚未发现任何有效的化合物。目前,SAMD9 的功能在很大程度上尚不清楚。鉴定 SAMD9 的功能对于阐明 MIRAGE 综合征的分子机制至关重要。为此,成海聪和金仓耕介(东京医科大学分子病理学系助理教授)开始了两种基于细胞的实验。一种是蛋白质组学筛选。在该实验中,以上述 MIRAGE 综合征的 HEK293 细胞模型的细胞提取物为对象,用抗体偶联树脂捕获 SAMD9,并寻找与 SAMD9 结合的分子。已确定了几种候选分子,目前正在验证中。另一个是基因组学筛选。Narumi 和 Kanekura 使用基因编辑技术应用了一种新的基因敲除筛选方法,现在正试图确定负责 SAMD9 功能的生物学途径。基于细胞的方法对于研究 MIRAGE 综合征的分子和细胞水平发病机制是有效的。另一方面,这些方法不适合阐明器官和身体水平的发病机制。它需要对 MIRAGE 综合征患者进行深入表征,并重现该疾病的动物模型。为了对患者进行深入分析,Tomonobu Hasegawa(庆应义塾大学医学院儿科教授)与日本儿科内分泌学会和日本新生儿健康与发展学会一起开始了全国性的 MIRAGE 综合征调查。这项调查将有助于找到更多患者,并将有助于阐明该综合征的临床表现。此外,为了建立MIRAGE综合征的动物模型,木下昌人(京都大学农学研究科应用生物科学系助理教授)和谷口义人(预防医学和公共卫生系教授)正在培育基因工程的青鳉(Medaka)。石井智宏(庆应义塾大学医学院儿科助理教授)也在培育基因工程小鼠。今年,靶向载体的构建已经完成。这些实验将在明年建立突变动物系。
* PA中的其他氨基酸取代,在参考文献1(Omoto S等,2018)和#2(Hashimoto T等,2020年)中研究了Baloxavir易感性没有变化的其他氨基酸取代。通过基于细胞培养的测定法评估(焦点,斑块或屈服分析,高含量成像中和(提示)和ViroDot分析)。EC 50倍变化。b细胞,细胞培养;临床试验;小鼠,鼠标模型; RG,反向遗传学; SUR,监视研究; BXA,在Baloxavir压力下选出的取代;不,Baloxavir不使用。c e23g(T0831)。通过表型测定测试了带有E23G的RG病毒。d对应于A36V A型A型PA中的A36V。 E对应于A型A型PA中的E119D。参考文献1。Omoto S,Speranzini V,Hashimoto T,Noshi T,Yamaguchi H,Kawai M,Kawaguchi K,Uehara T,Shishido T,Naito A,Naito A,Cusack S.2018。通过核酸内切酶抑制剂Baloxavir maroxil诱导的流感病毒变体的表征。SCI REP 8:9633。2。Hashimoto T,Baba K,Inoue K,Okane M,Hata S,Shishido T,Naito A,Wildum S,Omoto S.2020。在Baloxavir Marboxil的临床试验中检测到的流感病毒的三聚体RNA聚合酶复合物中氨基酸取代的全面评估。流感其他呼吸病毒DOI:10.1111/irv.12821。3。ince WL,Smith FB,O'Rear JJ,Thomson M.2020。J Infect DIS 222:957-961。 4。 2018。J Infect DIS 222:957-961。4。2018。治疗 - 伴随流感病毒聚合酶酸性取代率与Balosavir Maroxavir Marboxil试验中的i38中的i38中的酸性取代相关。Noshi T, Kitano M, Taniguchi K, Yamamoto A, Omoto S, Baba K, Hashimoto T, Ishida K, Kushima Y, Hattori K, Kawai M, Yoshida R, Kobayashi M, Yoshinaga T, Sato A, Okamatsu M, Sakoda Y, Kida H, Shishido T, Naito A.Baloxavir酸的体外表征,Baloxavir酸是一种流感病毒聚合酶PA亚基的第一类帽依赖性内切酶抑制剂。抗病毒Res 160:109-117。5。Takashita E,Morita H,Ogawa R,Nakamura K,Fujisaki S,Shirakura M,Kuwahara T,Kishida N,Watanabe S,Odagiri T.2018。流感病毒对新型帽依赖性核酸内切酶抑制剂baloxavir maroxil的敏感性。前微生物9:3026。6。Gubareva LV,Mishin VP,Patel MC,Chesnokov A,Nguyen HT,De La Cruz J,Spencer S,Spencer S,Campbell AP,Sinner M,Reid H,Reid H,Garten R,Katz JM,Katz JM,Fry AM,Barnes J,Barnes J,Wentworth DE。 2019。 评估在2016/17和2017/18季节在美国循环的流感病毒的Baloxavir敏感性。 欧元监视24:1800666。 7。 Takashita E, Daniels RS, Fujisaki S, Gregory V, Gubareva LV, Huang W, Hurt AC, Lackenby A, Nguyen HT, Pereyaslov D, Roe M, Samaan M, Subbarao K, Tse H, Wang D, Yen HL, Zhang W, Meijer A. 2020。 全球关于人流感病毒对神经氨酸酶抑制剂和cap依赖性核酸内切酶抑制剂Baloxavir的敏感性的更新,2017- 2018年。 抗病毒Res 175:104718。 8。 2020。Gubareva LV,Mishin VP,Patel MC,Chesnokov A,Nguyen HT,De La Cruz J,Spencer S,Spencer S,Campbell AP,Sinner M,Reid H,Reid H,Garten R,Katz JM,Katz JM,Fry AM,Barnes J,Barnes J,Wentworth DE。2019。评估在2016/17和2017/18季节在美国循环的流感病毒的Baloxavir敏感性。欧元监视24:1800666。7。Takashita E, Daniels RS, Fujisaki S, Gregory V, Gubareva LV, Huang W, Hurt AC, Lackenby A, Nguyen HT, Pereyaslov D, Roe M, Samaan M, Subbarao K, Tse H, Wang D, Yen HL, Zhang W, Meijer A.2020。全球关于人流感病毒对神经氨酸酶抑制剂和cap依赖性核酸内切酶抑制剂Baloxavir的敏感性的更新,2017- 2018年。抗病毒Res 175:104718。8。2020。Takashita E, Abe T, Morita H, Nagata S, Fujisaki S, Miura H, Shirakura M, Kishida N, Nakamura K, Kuwahara T, Mitamura K, Ichikawa M, Yamazaki M, Watanabe S, Hasegawa H, Influenza Virus Surveillance Group of J.流感A(H1N1)PDM09病毒,由于未经Baloxavir治疗的儿童检测到PA E23K替代而表现出对Baloxavir的敏感性降低。抗病毒Res 180:104828。 9。 Koszalka P,Tilmanis D,Roe M,Vijaykrishna D,Hurt AC。 2019。 亚太地区流感病毒的Baloxavir Marboxil易感性,2012- 2018年。 抗病毒Res 164:91-96。 10。 Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。 2020。 流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。 Proc Natl Acad Sci U S A 117:8593-8601。 11。 Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。 2020。 季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。 J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。抗病毒Res 180:104828。9。Koszalka P,Tilmanis D,Roe M,Vijaykrishna D,Hurt AC。2019。亚太地区流感病毒的Baloxavir Marboxil易感性,2012- 2018年。抗病毒Res 164:91-96。 10。 Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。 2020。 流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。 Proc Natl Acad Sci U S A 117:8593-8601。 11。 Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。 2020。 季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。 J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。抗病毒Res 164:91-96。10。Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。2020。流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。Proc Natl Acad Sci U S A 117:8593-8601。11。Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。2020。季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。J Infect DIS 221:367-371。12。Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Kiso M,Yamayoshi S,Murakami J,Kawaoka Y.2020。Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。J Infect Dis 221:1699-1702。13。Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。J Infect DIS 222:121-125。14。J Infect DIS 221:63-70。15。2020。16。在2018-2019流感季节治疗流感A的儿童后,检测Baloxavir Marboxil易感性降低的变体。Checkmahomed L,M'Hamdi Z,Carbonneau J,Venable MC,Baz M,Abed Y,Boivin G.2020。抗性抗性聚合酶酸I38T取代对当代流感A(H1N1)PDM09和A(H3N2)菌株的适应性的影响。Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, Yasuhara A, Takada K, Ito M, Nakajima N, Takahashi K, Lopes TJS, Dutta J, Khan Z, Kriti D, van Bakel H, Tokita A, Hagiwara H, Izumida N,Kuroki H,Nishino T,Wada N,Koga M,Adachi E,Jubishi D,木谷H,Kawaoka Y.流感A的变体降低了对日本患者分离的Baloxavir敏感性的变体,并通过呼吸道液滴进行拟合。NAT微生物5:27-33。 Takashita E, Kawakami C, Morita H, Ogawa R, Fujisaki S, Shirakura M, Miura H, Nakamura K, Kishida N, Kuwahara T, Mitamura K, Abe T, Ichikawa M, Yamazaki M, Watanabe S, Odagiri T, On Behalf Of The Influenza VirusNAT微生物5:27-33。Takashita E, Kawakami C, Morita H, Ogawa R, Fujisaki S, Shirakura M, Miura H, Nakamura K, Kishida N, Kuwahara T, Mitamura K, Abe T, Ichikawa M, Yamazaki M, Watanabe S, Odagiri T, On Behalf Of The Influenza Virus