番茄(Lycopersicon esculentum)通常被认为是植物育种成功的典型,并且通过使用生物技术而有可能进一步证明。对番茄作为基因工程模型系统的兴趣部分是由于过去50年来对Lycopersicon属所做的大量工作。这项工作包括收集乳杆菌及其野生亲戚的种质,创建染色体的添加和易位库存,发现或创建> 1200个单基因突变体(Stevens and Rick。1986)。 从野生种类的抗性基因转移。 为突变体或抗性基因的数量创建了近乎异构的线,以及clas -sical遗传图的发展(Tanksley等,1990)。 具有> 300个标记物,包括突变体,同工酶和抗性基因。 番茄作为研究系统的吸引力也是由于该物种将其用于基因工作的特征。 L. esculentum及其野生亲属是二倍体物种,2n = 24,并且适合局部逻辑研究。 L. esculentum易于自我授粉或交叉,以相对较高的种子组融合。 L. esculentum具有相对较小的基因组(0.7 pg)。 几乎没有重复的基因座(Rick,1971; Tanksley等,1987)。 关于L. esculentum及其野生亲戚的种植,遗传学和生物学的绝佳中心资源是“ The Tomato Crop”(Astherton and Rudich,1986)。 可以在番茄遗传合作社的年度出版报告中找到Lycopersicon可用的植物材料清单。1986)。从野生种类的抗性基因转移。为突变体或抗性基因的数量创建了近乎异构的线,以及clas -sical遗传图的发展(Tanksley等,1990)。具有> 300个标记物,包括突变体,同工酶和抗性基因。番茄作为研究系统的吸引力也是由于该物种将其用于基因工作的特征。L. esculentum及其野生亲属是二倍体物种,2n = 24,并且适合局部逻辑研究。L. esculentum易于自我授粉或交叉,以相对较高的种子组融合。L. esculentum具有相对较小的基因组(0.7 pg)。几乎没有重复的基因座(Rick,1971; Tanksley等,1987)。关于L. esculentum及其野生亲戚的种植,遗传学和生物学的绝佳中心资源是“ The Tomato Crop”(Astherton and Rudich,1986)。可以在番茄遗传合作社的年度出版报告中找到Lycopersicon可用的植物材料清单。在最近的一篇文章中。Hille等。 (1989)总结了在番茄改善中最广泛的术语意义上的生物技术。 而不是在这篇出色的文章中重复材料。 本讨论的重点是概述新兴技术用于番茄改进的能力和潜在价值。 使用分子开发在两种分子技术上使用分子发展中的进展。 使用TI介导的基因转移的RFLP图创建/使用RFLP图以及将外源DNA引入植物基因组。 如果人们还考虑了“生物技术”的标题培养,则也可以考虑原生质体融合和再生的植物改善的可能性。 当前的番茄RFLP图可能是较高的植物基因组中最合理的图(Tanksley等,1990)。 一旦创建。 RFLP地图有几种用于植物改进的用途。 该地图可用于定位和识别感兴趣基因的分子制造商(年轻和坦克。Hille等。(1989)总结了在番茄改善中最广泛的术语意义上的生物技术。而不是在这篇出色的文章中重复材料。本讨论的重点是概述新兴技术用于番茄改进的能力和潜在价值。使用分子开发在两种分子技术上使用分子发展中的进展。使用TI介导的基因转移的RFLP图创建/使用RFLP图以及将外源DNA引入植物基因组。如果人们还考虑了“生物技术”的标题培养,则也可以考虑原生质体融合和再生的植物改善的可能性。当前的番茄RFLP图可能是较高的植物基因组中最合理的图(Tanksley等,1990)。一旦创建。RFLP地图有几种用于植物改进的用途。该地图可用于定位和识别感兴趣基因的分子制造商(年轻和坦克。1989)。 曾经已经确定了紧密连接的分子标记。 标记可用于间接筛选感兴趣的基因。 ,因此促进了所需的主要基因的快速转移,同时最大程度地减少了连锁阻力(Tanksley等。1989; Tanksley,1989)。 RFLP映射可以进一步用于识别与重要定量性状相关的基因组区域。1989)。曾经已经确定了紧密连接的分子标记。标记可用于间接筛选感兴趣的基因。,因此促进了所需的主要基因的快速转移,同时最大程度地减少了连锁阻力(Tanksley等。1989; Tanksley,1989)。RFLP映射可以进一步用于识别与重要定量性状相关的基因组区域。一旦确定了这些区域,就可以使用该信息来促进影响定量特征的基因的转移(Paterson等,1988; Tanksley等人.. 1989)。
全球基因银行具有表型和遗传新颖性,可用于提高产量,作物适应性和农生动态性(Tanksley and McCouch,1997),同时缓冲作物遗传侵蚀(Khoury等,2021年)。然而,必须授权基因银行利用的新策略,以满足日益增长的全球粮食需求(McCouch,2013; Bohra等,2021),其作物替代方案具有适合气候变化的替代品,对环境和生物多样性的可持续性,以及社区的生物多样性(Scherer等人,2020年)。因此,为了在Genebank采矿中填补这一差距,该研究主题通过利用高通量表型和作物野生亲戚(CWR)和Landraces的基因分型来汇总了能够加快作物改进过程的最新发展(Singh等,2022)。如下一部分所讨论的那样,累积的作品创新了基因班克表征,利用和等位基因部署的不同步骤,包括种质鉴定,保护,保护,繁殖前筛查基因上多样性和相关标记物以及侵入性育种。