1 华沙医科大学核医学系,02-091 华沙,波兰;leszek.krolicki@wum.edu.pl(LK);jolanta.kunikowska@wum.edu.pl(JK) 2 巴塞尔大学医院神经外科系,4031 巴塞尔,瑞士;dominik.cordier@usb.ch 3 伯尔尼大学医院 Inselspital 神经内科系,3010 伯尔尼,瑞士;nedelina.slavova@gmail.com 4 精神病学和神经病学研究所神经外科系,02-957 华沙,波兰;henryk.koziara@gmail.com 5 欧洲委员会联合研究中心 (JRC),76125 卡尔斯鲁厄,德国;frank.bruchertseifer@ec.europa.eu (FB); alfred.morgenstern@ec.europa.eu (AM) 6 核医学与放射化学,巴塞尔大学医院,4031 巴塞尔,瑞士 7 伯尔尼与巴塞尔大学神经外科系,4001 巴塞尔,瑞士 * 通信地址:adrian.merlo@bluewin.ch
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
暑期学生,5-9 年级 卡罗尔学校的有针对性的认知干预 (TCI) 是什么? 在卡罗尔学校,我们的内部测试显示,大多数患有语言学习障碍的卡罗尔学校学生在一个或多个认知领域存在弱点。 阅读流畅性、阅读理解和数学素养等重要的学术技能依赖于潜在的认知能力,例如反应时间、处理速度、工作记忆和执行功能。后测数据分析表明,通过对这些认知领域进行个性化的计算机培训,可以提高儿童的阅读能力。 为什么在夏季选择 TCI? TCI 不教授特定内容,而是培养学生访问将遇到的任何内容所需的认知能力。 通过提高大脑有效运作的能力,TCI 帮助学生开发一个认知“工具箱”,帮助他们完成学术生涯。 与其他市售的大脑训练计划不同,TCI 研究分布在整个大脑中的各种网络,以针对每个学生的个人弱点并改善认知和学术成果。我们如何确定您的孩子需要练习的认知技能?在 Summer@Carroll 开始前单独安排的会议中,我们会进行评估,测量以下认知领域:反应时间、工作记忆、执行功能和处理速度。然后,我们会根据学生的分数生成认知概况。根据此概况,每个学生都会被分配到一个特定的计划,该计划由旨在针对其最薄弱领域的活动组成。 TCI 专家会监控您孩子在每项活动中的进度,分析数据并提供指导。 TCI 结束时,我们会进行后测,以确定哪些认知领域从 TCI 中得到了改善,以及它们发生了多大的变化。结果将在计划结束时分享。 我的孩子在 TCI 期间会做什么?在 TCI 期间,学生将完成基于计算机的练习,以加强大脑中的特定连接,从而实现更快、更高效的学习。您的孩子将进行针对其特定弱点(反应时间、工作记忆或执行功能)设计的一系列活动。整个夏天,学生都会反思他们的工作并设定个人目标。更多信息:Patty Muldoon pmuldoon@carrollschool.org
Hang Thi Thuy Gander-Bui, 1 , 2 Jo € elle Schl € afli, 1 Johanna Baumgartner, 1 , 2 Sabrina Walthert, 1 Vera Genitsch, 3 Geert van Geest, 4 Jose´ A. Galva´ n, 3 Carmen Cardozo, 3 Cristina Graham Martinez, 3 Mona Grans, 5 Sabine Muth, 5 Re´ my Bruggmann,4 Hans Christian Probst,5 Cem Gabay,6和Stefan Freigang 1,7, * 1, * 1伯恩伯恩伯恩伯恩大学组织医学与病理学研究所实验病理学,瑞士大学2研究生院2伯尔尼大学伯尔尼,伯尔尼,瑞士3012伯尔尼,3012瑞士4 Interfulty BioInformatics和瑞士生物信息学研究所,伯恩大学,3012,瑞士伯恩,瑞士5. 55131 MAINZ大学医学中心,德国55131 Mainz 6 6 6瑞士大学医院,瑞士大学医院,瑞士大学医院7号风湿病学司。 stefan.freigang@unibe.ch https://doi.org/10.1016/j.immuni.2023.06.023
肺癌是全球癌症死亡的主要原因,传统化疗对晚期非小细胞肺癌 (NSCLC) 的疗效有限。近年来,由于包括靶向治疗在内的新治疗方式的发展,NSCLC 患者的预后已显著改善。靶向治疗利用针对特定突变基因(例如 EGFR 和 ALK)的单克隆抗体 (mAb)、抗体-药物偶联物 (ADC) 或小分子酪氨酸激酶抑制剂 (TKI)。这些药物的开发加深了我们对 NSCLC 的了解并改善了患者的治疗效果。本综述旨在总结 NSCLC 靶向治疗的机制和现状,讨论克服获得性耐药的策略,并应对该领域当前面临的挑战。
摘要:软骨肉瘤 (CHS) 是异质性的,但总体而言,是第二大最常见的原发性恶性骨肿瘤。尽管在过去几十年中,人们对肿瘤生物学的了解呈指数级增长,但手术切除仍然是治疗这些肿瘤的金标准,而放疗和分化化疗无法充分控制癌症。对 CHS 的深入分子表征揭示了与上皮来源的肿瘤相比的显著差异。从遗传学上讲,CHS 是异质性的,但没有定义 CHS 的特征性突变,然而,IDH1 和 IDH2 突变很常见。血管减少、胶原蛋白、蛋白聚糖和透明质酸的细胞外基质组成为肿瘤抑制免疫细胞创造了机械屏障。相对较低的增殖率、MDR-1 表达和酸性肿瘤微环境进一步限制了 CHS 的治疗选择。 CHS 治疗的未来进展取决于对 CHS 的进一步表征,特别是肿瘤免疫微环境,以便改进和更好地针对性地治疗。
药品价值链(包括临床试验、定价、获取途径和报销)是为传统单一疗法设计的。尽管已经发生了范式转变,增加了靶向联合疗法 (TCT) 的相关性,但法规和常规做法的适应速度很慢。我们探索了 9 个欧洲国家 17 家领先癌症机构的 19 位专家报告的 23 种晚期黑色素瘤和肺癌 TCT 的获取途径。我们发现,各国患者获取 TCT 的途径存在差异,各国特定法规存在差异,黑色素瘤和肺癌的临床实践也存在差异。更适合联合疗法背景的法规可以提高整个欧洲获取的公平性,并促进基于证据和授权使用联合疗法。
摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。
● 帮助免疫系统寻找并摧毁癌细胞——靶向治疗可以标记特定的癌细胞,使免疫系统更容易识别和摧毁它们。同时,它还能增强免疫系统对抗癌症的功能和能力。 ● 阻断信号以减缓癌细胞的生长——靶向治疗阻断和扭转指示癌细胞生长和分裂的信号。 ● 阻止为癌细胞提供营养的血管的发育——癌细胞需要不断的营养和氧气供应才能生长和分裂。血管生成抑制剂等靶向治疗通过阻止新血管的形成来干扰这一生长过程。 ● 直接向癌细胞输送毒素——一些单克隆抗体附着在癌细胞表面的特定靶点上并摧毁它们。没有靶点的细胞不会受到伤害。