学生摘要 论文“下一代药物输送:靶向方法的比较评估”探讨了药物输送系统的演变和进步,特别关注靶向药物输送系统 (TDDS)。该研究强调了传统药物输送方法的局限性,例如全身分布导致脱靶效应和生物利用度低。它强调需要创新方法来提高治疗效果,同时最大限度地减少不良反应,特别是在癌症治疗中。本文严格评估了各种下一代 TDDS,包括基于纳米颗粒的系统、抗体-药物偶联物和刺激响应系统,评估了它们的有效性、安全性和临床转化潜力。通过比较这些先进技术,该研究旨在深入了解它们对精准医疗和药物输送未来的影响。关键词:药物输送系统、靶向药物输送、基于纳米颗粒的系统、精准医疗、治疗效果。 1. 简介术语“药物输送系统”是指药物制剂,例如片剂、胶囊、软膏或溶液。 “控释药物输送系统”或“受控药物输送系统”是指采用旨在调节药物随时间释放动力学的技术的制剂。这些控释系统不同于传统制剂,后者通常会立即释放大部分或全部药物,而无需任何调节。因此,传统制剂通常被称为“速释”(IR)制剂。药物输送技术的演变可以通过多种方式来表征,例如通过治疗类别和输送模式。在这种情况下,通过美国食品药品管理局 (FDA) 批准的产品重点介绍新技术来说明这种演变。尽管药物输送技术在不断进步,但制剂成功的真正衡量标准在于其经过验证的安全性和有效性,正如 FDA 批准所证明的那样,这最终使患者能够从这些创新中受益。理论上,提供缓释的制剂可以与速释 (IR) 制剂一样有效,前提是血液中的药物浓度保持在最大安全浓度 (Cmax) 以下并高于最低有效浓度 (Cmin)。Cmax 与 Cmin 的比率称为治疗指数。由于大多数药物的治疗指数足够宽,即使过量摄入也能保持安全,因此血液药物浓度的变化通常不会影响整体疗效。控释药物输送系统始于 Smith, Kline & French 的 Spansule® 技术
摘要:肺癌是全球男性和女性癌症相关死亡的主要原因。表皮生长因子受体酪氨酸激酶抑制剂 (EGFR-TKI) 是治疗晚期非小细胞肺癌 (NSCLC) 患者的有效药物,这些患者携带 EGFR 激活突变,但由于不可避免地会出现耐药性,因此无法治愈。最近的体外研究表明,EGFR-TKI 耐药性可能来自一小部分耐药持久细胞 (DTP),通过非遗传重编程,进入可逆的缓慢至非增殖状态,然后产生遗传耐药性。因此,揭示控制耐药状态动态的分子机制是当务之急,以便为患者提供可持续的治疗解决方案。越来越多的 DTP 存活的分子机制被描述出来,例如染色质和表观遗传重塑、抗凋亡/存活途径的重新激活、代谢重编程以及与微环境的相互作用。在这里,我们回顾并讨论了目前提出的与 DTP 状态有关的机制。我们描述了它们的生物学特征、耐受的分子机制以及针对 DTP 进行测试的治疗策略。
1 法国马赛 AP-HM 多学科肿瘤学和治疗创新系、艾克斯马赛大学、CNRS INSERM CRCM、F-13009 马赛、法国;laurent.greillier@ap-hm.fr 2 法语肺病学会(SPLF)、F-75006 巴黎、法国;nicolas.girard2@curie.fr (NG);marie.wislez@aphp.fr (MW) 3 法语肿瘤学组(GOLF)、F-75006 巴黎、法国 4 Inserm CIC1401 贝尔格尼研究所和老年癌症患者临床研究平台(PACAN)、F-33076 波尔多、法国;m.gauvrit@bordeaux.unicancer.fr (MG);yaniss.belaroussi@u-bordeaux.fr (YB); matthieu.frasca@chu-bordeaux.fr(MF);pernelle.noize@chu-bordeaux.fr(PN);simone.pelissier@chu-bordeaux.fr(SM-P.)5 巴黎癌症研究所 HEGP 老年肿瘤诊所老年医学系 CARPEM,AP-HP,F-75015 巴黎,法国;elena.paillaud@aphp.fr(EP);philippe.caillet@aphp.fr(PC);soraya.mebarki@aphp.fr(SM)6 巴黎大学健康学院,F-75006 巴黎,法国 7 法国老年肿瘤学会(SoFOG),F-63122 Ceyrat,法国;coline.montegut@ap-hm.fr(CM);boulahssass.r@chu-nice.fr(RB); frederic.pamoukdjian@aphp.fr (FP); romain.corre@ch-cornouaille.fr (RC) 8 居里-蒙苏里胸科研究所,F-75014 巴黎,法国 9 UVSQ 巴黎,F-78000 萨克雷,法国 10 内科老年病学和治疗科 AP-HM,F-13009 马赛,法国 11 尼斯大学医院老年肿瘤康复和自主部门协调科,F-06000 尼斯,法国 12 尼斯索菲亚安提波利斯大学肿瘤年龄中心,F-06100 尼斯,法国 13 科钦医院肿瘤胸外科肺病科 AP-HP,F-75014 巴黎,法国; pascal.wang@aphp.fr 14 巴黎大学科德利埃研究中心,索邦大学 INSERM 团队炎症补体和癌症,F-75006 巴黎,法国 15 老年科 APHP,阿维森医院,F-93000 博比尼,法国 16 I SERM UMR_S942 应激条件下的心血管标志物 MASCOT,巴黎索邦大学诺德大学,F-93000 博比尼,法国 17 肺科 Cornouaille 医院,F-29000 坎佩尔,法国 18 肿瘤科 Institut Bergonié,F-33076 波尔多,法国; m.cabart@bordeaux.unicancer.fr 19 INSERM U955 IRMB Universit é Paris-Est, F-94000 Cré teil, France 20 波尔多大学 Haut-Leveque 医院胸外科,波尔多大学,F-33000 波尔多,法国 21 INSERM 波尔多人口健康研究中心 EPICeNE Team UMR 1219, F-33000 法国波尔多 22 姑息医学科 CHU, F-33000 法国波尔多 23 波尔多人口健康中心 Recherche U1219, Equipe Cancer et Environnement EPICeNE, 波尔多大学, F-33000 法国波尔多 24 临床药理学部 CHU Bordeaux, F-33000 法国波尔多 25 Univ波尔多 INSERM BPH U1219 药物流行病学团队,F-33000 波尔多,法国 26 CNRS EFS ADES 艾克斯-马赛大学,F-13015 马赛,法国 * 通讯地址:anne-laure.couderc@ap-hm。fr;电话:+33(4)91-74-45-30;传真:+33(4)91-74-48-33 † 这些作者对这项工作做出了同等贡献。
以进行性神经元丧失和认知障碍为特征的神经退行性疾病构成了重大的全球健康挑战。这项研究探讨了纳米疗法作为增强跨生理障碍的药物递送的一种有希望的方法,尤其是血脑屏障(BBB)和血液脑脊髓液屏障(B-CSFB)。通过采用纳米颗粒,该研究旨在应对诊断和治疗阿尔茨海默氏症,帕金森氏症和亨廷顿疾病等疾病的关键挑战。这些疾病的多因素性质需要创新的解决方案,以利用纳米医学来改善药物溶解度,循环时间和靶向递送,同时最大程度地减少脱靶效应。这些发现强调了推进纳米医学应用程序以制定有效的治疗策略的重要性,这些策略可以减轻对个体和医疗保健系统的神经退行性疾病负担。
神经退行性疾病的特征是进行性神经元丢失和认知障碍,对全球健康构成重大挑战。本研究探索了纳米疗法作为一种有前途的方法的潜力,以增强药物在生理屏障(尤其是血脑屏障 (BBB) 和血脑脊液屏障 (B-CSFB))中的输送。通过使用纳米粒子,本研究旨在解决阿尔茨海默病、帕金森病和亨廷顿病等疾病的诊断和治疗中的关键挑战。这些疾病的多因素性质需要创新的解决方案,利用纳米医学来改善药物溶解度、循环时间和靶向输送,同时最大限度地减少脱靶效应。研究结果强调了推进纳米医学应用以开发有效治疗策略的重要性,这些策略可以减轻神经退行性疾病对个人和医疗保健系统的负担。
摘要:分子印迹可生物降解聚合物因其靶向识别和生物相容性的能力在药物输送方面受到了广泛关注。本研究报告了一种新型荧光活性磁性分子印迹药物载体(MIDC),该载体使用葡萄糖基可生物降解交联剂合成,用于输送抗癌药物多西紫杉醇。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X 射线衍射光谱和振动样品磁强计(VSM)对磁性分子印迹聚合物(MMIP)进行了表征。MMIP 的磁化值为 0.0059 emu g − 1,与多西紫杉醇的结合能力为 72 mg g − 1。进行了体外和体内研究以观察 MIDC 在药物输送中的有效性。细胞活力测定表明 MMIP 对健康细胞没有毒性作用。利用MMIP的磁性,只需将外部磁场施加于小鼠(加载20分钟后)并拍摄X射线图像,即可快速识别目标部位的药物载体。因此,基于MMIP的新型药物载体可以在不影响健康细胞的情况下将药物输送到目标部位。
摘要:细菌感染引起的疾病,尤其是耐药细菌引起的疾病威胁着全世界的人类健康。已经预测,早期诊断和治疗将有效降低由细菌感染引起的死亡率。因此,迫切需要开发有效的方法来早日检测细菌感染并尽快治疗它们。一些细菌可用于治疗细菌感染,例如大肠杆菌(大肠杆菌),金黄色葡萄球菌,铜绿假单胞菌,沙门氏菌spp,klebsiella spp,klebsiella肺炎幽门螺杆菌。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。 纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。 纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。 关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。Even nanoparticles like Silver Nanoparticles (AgNPs), Gold Nanoparticles (AuNPs), Zinc Oxide Nanoparticles (ZnO NPs), Copper Nanoparticles (CuNPs), Iron Oxide Nanoparticles (Fe3O4 NPs), Chitosan Nanoparticles, Titanium Dioxide Nanoparticles (TiO2 NPs), Graphene Oxide纳米颗粒,二氧化硅纳米颗粒,聚合物纳米颗粒也对细菌感染的治疗也非常有用,因为它们可以封装抗生素或抗菌剂,以提供持续释放并靶向细菌感染(Xu等,2019)。
1 格勒诺布尔阿尔卑斯大学、法国国家健康与医学研究院、CEA、IRIG-癌症和感染生物学、UMR_S 1036、F-38000 格勒诺布尔、法国; caroline.roelants@inovarion.com (CR); qfranquet@chu-grenoble.fr(QF); csarrazin1@chu-grenoble.fr (客户服务) nicolas.peilleron@gmail.com (NP); sofiagiacosa@gmail.com(新加坡); laurent.guyon@cea.fr (LG); claude.cochet@cea.fr (CC) 2 Inovarion, 75005 巴黎,法国 3 格勒诺布尔阿尔卑斯大学,INSERM,CEA,IRIG-大规模生物学,UMR 1038,F-38000 格勒诺布尔,法国; catherine.pillet@cea.fr 4 格勒诺布尔阿尔卑斯大学医院,CS 10217,38043 格勒诺布尔 CEDEX 9,法国; lafontanell@chu-grenoble.fr(AF); g.fiard@ucl.ac.uk (GF); JALong@chu-grenoble.fr(J.-AL); jldescotes@chu-grenoble.fr (J.-LD) * 通信地址:odile.filhol-cochet@cea.fr;电话:+ 33-(0)4-38785645;传真:+ 33-(0)4-38785058
1 江南大学无锡医学院细胞生物学系,江苏省无锡市,2 江南大学无锡医学院肠道菌群与慢性疾病教育部医学基础研究创新中心,江苏省无锡市,3 贵州护理职业学院病原生物学系,贵州省贵阳市,4 江南大学无锡医学院神经变性与神经损伤疾病实验室,江苏省无锡市,5 南华大学衡阳医学院第一附属医院神经内科、脑疾病多组学研究中心,湖南省衡阳市,6 南华大学衡阳医学院湖南省免疫相关脑病临床研究中心
1. Atapattu, KV、Salibi, G. 和 Tzenios, N. (2023)。斯里兰卡科伦坡地区雨季与登革热爆发关系研究。医学研究院和其他生命科学专题杂志。,1 (3)。2. Morton Cuthrell, K.、Tzenios, N. 和 Umber, J. (2022)。自身免疫性疾病的负担;综述。亚洲免疫学杂志,6 (3),1-3。3. Sibanda, AM、Tazanios, M. 和 Tzenios, N. (2023)。社区赋权作为促进健康的工具。4. OFFIONG, BE、Salibi, G. 和 Tzenios, N. (2023)。非洲的医疗人才流失祸害:重点关注尼日利亚。5. Tzenios, N. (2023)。研究中的统计分析。6. JUSTUS, O.、Salibi, G. 和 Tzenios, N. (2023)。监测是疾病预防和控制的基础。