人乳头瘤病毒 (HPV) 是一组由 200 多种相关病毒组成的病毒群,其中一些已知是导致各种癌症(包括宫颈癌、肛门癌和口咽癌)的病原体。HPV 相关癌症通常与高危 HPV 类型(如 HPV-16 和 HPV-18)的持续感染有关,这些病毒会将其病毒 DNA 整合到宿主基因组中,从而激活 E6 和 E7 等致癌基因。这些致癌蛋白会破坏关键的肿瘤抑制通路,特别是涉及 p53 和视网膜母细胞瘤蛋白 (Rb) 的通路,导致细胞增殖失控和凋亡逃避。尽管疫苗接种计划在预防 HPV 感染方面取得了重大进展,但 HPV 相关癌症的治疗仍然是一项重大的临床挑战,尤其是在晚期或转移性阶段。病毒疗法,即利用病毒或病毒成分选择性地靶向和杀死癌细胞的治疗性应用,已成为癌症治疗的一种创新方法。在各种病毒治疗策略中,使用纳米颗粒将溶瘤病毒或基于病毒的疗法递送至癌细胞具有显著的提高治疗效果的潜力。基于纳米颗粒的递送系统具有靶向递送、降低脱靶效应和控制释放等优势,使其成为治疗 HPV 相关癌症的理想选择。本文探讨了基于纳米颗粒的病毒疗法在靶向治疗 HPV 相关癌症方面的潜力,重点介绍了该方法的机制、优势、挑战和未来方向 [1]。
摘要 . 背景:遗传性周围神经病是影响周围神经系统的遗传性疾病,包括腓骨肌萎缩症、家族性淀粉样多发性神经病和遗传性感觉和运动神经病。虽然遗传性周围神经病的分子基础已得到广泛研究,但缺乏药物治疗的介入试验。目的:我们收集了药物和基因治疗对遗传性周围神经病有效性的证据。方法:我们在多个数据库中搜索了遗传性周围神经病治疗的随机对照试验 (RCT)、观察性研究和病例报告。两名研究人员独立提取和分析数据,使用牛津循证医学中心 2011 年证据水平结合 Jadad 量表评估研究质量。结果:在最初确定的 2046 项研究中,119 项试验符合我们的纳入标准,其中只有 36 项被纳入我们的最终分析。研究表明,抗坏血酸对 CMT1A 没有治疗益处,而巴氯芬、纳曲酮和山梨醇 (PXT3003) 的组合显示出一些疗效,但 III 期数据不完整。在 TTR 相关淀粉样多发性神经病中,tafamidis、patisiran、inotersen 和 revusiran 在高质量 RCT 中显示出显著益处。规模较小的研究表明 L-丝氨酸对 SPTLC1 相关遗传性感觉神经病、核黄素对 Brown-Vialetto-Van Laere 综合征 (SLC52A2/3) 有效,缺乏植烷酸的饮食对 Refsum 病 (PHYH) 有效。结论:本项目中强调的“可治疗”变异将在治疗药物组中被标记,以便在诊断时提醒临床医生,并能够及时治疗患有遗传性周围神经病的患者。
• Lumit 免疫测定细胞系统是一种均质生物发光免疫测定,它将免疫检测与酶亚基互补相结合,可直接在细胞裂解物中测量目标分析物 • 蛋白质磷酸化检测:Lumit 免疫测定能够快速、无需清洗地检测激酶信号通路(如 RAS-MAPK/ERK)中的磷酸化,以进行抑制剂评估和分析 • 靶向蛋白质降解 (TPD):Lumit 免疫测定能够有效分析多种细胞系中 PROTAC 介导的蛋白质降解,支持靶向激酶降解 • 高通量筛选 (HTS):Lumit 免疫测定针对可扩展的 HTS 进行了优化,能够有效筛选 384 孔和 1536 孔格式的激酶途径调节剂
摘要:目前转移性皮肤黑色素瘤的治疗方法包括免疫疗法和针对丝裂原活化蛋白激酶 (MAPK) 通路关键分子的药物,该通路通常由 BRAF 驱动突变激活。转移性 BRAF 突变黑色素瘤患者的整体反应对于结合 BRAF 和丝裂原活化蛋白激酶激酶 (MEK) 抑制剂的疗法更好。然而,大多数最初对疗法有反应的患者在数月内就会产生耐药性。获得性对靶向疗法的耐药性可能是由于黑色素瘤细胞中的其他基因改变以及通常与转录重编程和去分化细胞状态相关的非遗传事件。在第二种情况下,有可能识别由靶向疗法诱导的促纤维化反应,这些反应有助于改变黑色素瘤肿瘤微环境。已证实多种恶性肿瘤(包括乳腺癌和胰腺癌)的慢性纤维化与癌症之间存在密切的相互关系。在此背景下,纤维化对黑色素瘤药物适应性和治疗耐药性的贡献正在迅速显现。在这篇综述中,我们总结了最近的证据,强调了药物暴露和耐药黑色素瘤中纤维化疾病的特征,包括细胞外基质重塑增加、肌动蛋白细胞骨架可塑性增强、对机械线索的高度敏感性以及炎症微环境的建立。我们还讨论了几种潜在的治疗方案,用于操纵这种纤维化样反应来对抗耐药性和侵袭性黑色素瘤。
i. 诊断标记和指标 - 开发可靠的症状前标记和诊断疾病指标和生物标记(包括数字生物标记),以尽早预测和检测关节炎,包括影响和/或预测疾病发展的社会和社会心理因素以及健康不平等。这可以包括检测开发和验证,其中有明确的临床实施发展途径,以及使用探索性终点为开发新措施提供临床有效性。ii. 遗传风险评分 - 探索将其作为常规临床管理的一部分,用于已知与遗传有关的关节炎疾病。iii. 精准医疗和分析/分层方法 - 跨多组学平台、信息学、数字数据源和医疗技术开展工作,开发和改进有针对性的治疗和个性化干预措施,以阻止或逆转疾病进展。这包括识别具有不同疾病机制、生活经历或对治疗有特定反应的人,以了解治疗何时以及对谁有效或无效。iv. 测试治疗 - 临床试验,例如首次人体试验、可行性或治疗效果研究。 v. 药物或手术的替代方法——开发可靠、经济有效的心理治疗和社会干预措施。vi. 卫生服务研究——了解影响健康行为的个人、家庭、组织、机构、社区和人口层面的行为、心理、组织和社会因素,并获得有效、高效的优质、经济有效的医疗保健。
开发新型的自使性接头,基于碎片和环化反应的损坏的治疗应用,由弗朗西斯科·科尔扎纳·洛佩斯(FranciscoCorzanaLópez)和埃斯特·埃斯特·吉米尼斯·莫雷诺(EsterJiménezMoreno)执导的玛丽娜·萨拉斯·库贝罗(Marina Salas Cubero)的博士学位论文(由La Rioja大学出版)识别非货币商业sinobraderivada 3.0未竞争。 div>允许超出本许可涵盖的内容,可以从版权所有者那里要求。 div>
引言个人健康状况通常会随着距离城市中心的增加而下降 1 ,而超过 17% 的加拿大人生活在农村、偏远和北部地区 2 ,因此需要采取旨在改善城乡健康差距的公共卫生干预措施。解决农村健康不平等问题因许多独特的障碍而变得复杂(例如人口密度低、地理距离大以及获得卫生专业人员和计划的机会有限) 3,4 。一个可改变的风险因素是促进健康行为的改变 5 ,包括戒烟 6 。农村地区的烟草使用率往往较高 7 ,而烟草是可预防疾病、发病率和死亡率的主要原因 8 ,戒烟可以大大降低遭受相关危害和后果的风险,并有助于改善农村社区的健康状况 7 。公认的戒烟一线药物疗法是尼古丁
1 巴黎 CARPEM 癌症研究所、AP-HP、AP-HP 中心、乔治蓬皮杜欧洲医院肝胃肠病学和消化肿瘤学系,法国巴黎勒布朗街 20 号,75015; arnaud.bayle@aphp.fr (AB); debora.basile@aphp.fr (数据库); geraldine.perkins@aphp.fr (GP) 2 巴黎癌症研究所 CARPEM, AP-HP, AP-HP。乔治蓬皮杜欧洲医院生物化学系中心,法国巴黎 75015; simon.garinet@aphp.fr (新加坡); pierre.laurent-puig@aphp.fr(PL-P.); helene.blons@aphp.fr (HB) 3 科德利埃研究中心,法国巴黎索邦大学 INSERM,75015 巴黎,法国 4 巴黎 CARPEM 癌症研究所,AP-HP,AP-HP.Center,医学生物信息学系,乔治蓬皮杜欧洲医院,75015 巴黎,法国; bastien.rance@aphp.fr * 通信地址:jtaieb75@gmail.com † AB 和 DB 对这项工作做出了同等贡献。
摘要:背景和目的:通过激动剂激活 5-HT 4 受体,通过增强非淀粉样变性途径已成为治疗阿尔茨海默病 (AD) 的有效治疗策略。本文评估了替加色罗(一种有效的肠易激综合征药物)对 AD 治疗的潜在治疗效果。为了设想其有效的再利用,开发了载有替加色罗的纳米乳剂,并通过血脑屏障穿梭肽对其进行功能化。结果:替加色罗的丁酰胆碱酯酶抑制活性及其神经保护细胞作用得到了强调,证实了这种多效药物对 AD 治疗的兴趣。考虑到其药物特性,为了限制其静脉注射后的外周分布,将其封装到约 50 nm 且具有中性 zeta 电位特征的单分散脂质纳米乳剂 (Tg-NE) 中。确定了制剂在 4 ◦ C 库存条件下和血液仿生介质中的稳定性。实现了肽 22 在 Tg-NE 上的吸附。通过色谱法(SEC 和 C 18 /HPLC)和等温滴定量热法表征了功能化的 NE,证明了吸附的有效性。从体外试验来看,这些纳米载体似乎适合实现替加色罗的控制释放,且不具有溶血性。结论:开发的肽 22 功能化的 Tg-NE 似乎是一种有价值的工具,可以在进一步的临床前研究中探索重新利用替加色罗治疗 AD 的方法。
摘要 — 磁性纳米粒子 (MNP) 在许多生物医学应用中是非常有吸引力的组件,特别是作为用于靶向治疗的治疗性磁性微载体 (TMMC)。虽然可以使用外部磁场有效地收集和运输 MNP,但最佳输送方式尚未得到充分研究。在本文中,我们讨论了可变形软磁微型机器人在不同磁场条件下的建模和特性描述。所考虑的微型机器人由浸入不同载体流体中的超顺磁性氧化铁 (SPIO) 组成,并且已经在弱磁场下通过实验表征了其行为。实验结果清楚地表明,观察结果正确地遵循了模型预测。具有可控形状变形的软磁微型机器人由于其特性对环境条件(例如容器尺寸、速度、剪切应力)的适应性而具有巨大的靶向药物输送潜力。