摘要:河马途径在物种之间是保守的。关键的哺乳动物河马途径激酶,包括MST1/2和LATS1/2,通过失活TEAD共激活剂,YAP和TAZ抑制细胞生长。广泛的研究阐明了河马信号在癌症,发育和再生中的作用。值得注意的是,河马途径成分的失调不仅有助于肿瘤的生长和转移,而且还使肿瘤对疗法有抵抗力。本综述深入研究了癌症/TAZ-TEAZ介导的基因调节和癌症生物学过程的最新研究。我们专注于几个关键领域:YAP/TAZ激活的新鉴定的分子模式,有助于转移和癌症耐药性的新兴机制,在肿瘤抑制中的意外作用以及针对该途径的治疗策略的进步。此外,我们提供了YAP/TAZ的生物学功能的更新视图,讨论正在进行的争议,并就这个快速发展的领域中的特定辩论主题提供了观点。
•网络图开放至2023年9月8日•采用TAZ级预报 - 9月•战略和项目草案 - 11月•社区演讲 - 11月 - 1月•MTP采用2024年5月
在多种血液系统恶性肿瘤中的体外细胞毒性测定:a)SU-DHL-4细胞毒性测定。在存在媒介物(DMSO)或TazeMetostat(500nm)的情况下预处理3天;与UTD,CART19,CART79B或CART22(E:t 0.06:1)共同培养 - 预处理后3天(72h)b)CellcyTex长期细胞毒性测定。在多发性骨髓瘤细胞系RPMI-8266-GFP中,与250 nm tazemetostat或DMSO预处理3天的多发性骨髓瘤细胞系RPMI-8266-GFP中的总荧光强度3天,然后与抗BCMA-CART-CART-CART细胞或UTD在0.5:1 e:t的情况下共同培养。c)AML细胞系(KG-1和THP-1)杀死测定法。kg-1和Thp-1细胞用5 um taz或DMSO预处理3天;然后将细胞与UTD或CART33共培养3天,在多个E:T比的TAZ/DMSO存在下。
尽管癌症治疗的最新进展显著改善了患者的预后,但耐药性仍然是一项重大挑战。针对程序性细胞死亡是抗肿瘤药物开发的主要方法。程序性细胞死亡 (PCD) 的失调导致对多种癌症疗法产生耐药性。Yes 相关蛋白 (YAP) 及其同源物 TAZ 是 Hippo 通路的主要下游效应物,在多种人类恶性肿瘤中被异常激活。Hippo-YAP 通路最初在果蝇中发现,在人类中保存良好,在调节细胞命运、组织生长和再生方面起着决定性作用。YAP 信号的激活已成为促进癌细胞增殖、转移和耐药性的关键机制。了解 YAP/TAZ 信号网络在 PCD 和耐药性中的作用可以促进开发有效的癌症治疗策略。
简介肺癌是全球癌症死亡的主要原因,估计每年有超过 100 万人死于癌症 (1, 2)。不幸的是,肺癌的预后仍然不容乐观,5 年生存率约为 15% (3)。针对致癌驱动因素的分子靶向疗法取得了新进展,带来了重大突破,但 KRAS 的激活突变仍然无法用药 (4, 5)。主要通路(如 RAF/MEK/ERK 和 PI3K/AKT/mTOR 网络)受激活的 KRAS 调控,从而促进癌症存活。作为抗击肺癌的重要组成部分,我们需要更好地了解癌症生物学,并增加受益于癌症治疗的人群。Hippo 通路最早是在果蝇的组织生长基础上发现的,它是一种强大的调节器,可控制器官生长、细胞分化和组织稳态 (6)。高度相关的转录调节因子是相关蛋白 (YAP) 和具有 PDZ 结合基序的转录辅激活因子 (TAZ) 是细胞增殖和分化过程中结构和结构特征的基本来源 (7, 8)。近年来,YAP/TAZ 引起了广泛关注,因为它是多种癌症特征的触发因素,并且已证明 YAP/TAZ 活性对于发展、进展和转移至关重要 (9)。最近的研究将癌症中 YAP/TAZ 的复杂性与其他癌症相关因子和通路联系起来,例如 KRAS、APC、LKB1、异常 GPCR 信号和 WNT 信号 (10)。在肺癌中,YAP 的异常表达与对治疗药物的耐药性、癌症进展和转移到远处部位(例如淋巴结和脑)有关 (11, 12)。 Hippo 通路失调主要由细胞核中的 YAP 进行,研究表明,在约 65% 的非小细胞肺癌中,该通路会在细胞核中诱导生长调节通路 (13)。此外,肺癌患者中 YAP 表达升高与预后不良有关 (9, 14)。尽管最近在理解癌症领域的 YAP 方面取得了进展,但 YAP 在细胞或组织中在肺癌肿瘤发生中的作用仍有待探索。维替泊芬是一种用于眼科疾病光动力疗法的光激活化合物,具有
癌症干细胞(CSC)与肿瘤的启动,美味和耐药性有关,并被认为是癌症治疗的有吸引力的靶标。在这里,我们鉴定了由AXL受体,PYK2和PKCα介导的临床相关的Nexus,并显示了其对TNBC中干性的影响。AXL,PYK2和PKCα表达与基础类乳腺癌患者的干性特征相关,并且在多个间充质TNBC细胞系中它们的耗竭显着减少了乳球形成细胞的数量和具有CSCS特征性标记的细胞的数量。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。 pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。 pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。 TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。敲低PYK2可降低AXL,PKCα,FRA1和PYK2蛋白的水平,并在PKCα耗竭后获得了类似的趋势。pyk2 depletion通过FRA1和TAZ介导的反馈回路降低了AXL转录,而PKCα抑制作用诱导AXL将AXL重新分布为内体/溶酶体隔室并增强其降解。pyk2和pkcα在多个诱导型AXL水平的多个诱导途径的途径上进行合作,并同时使用STAT3,TAZ,FRA1和SMAD3的水平/激活以及多能转录因子NANOG和OCT4。TNBC敏感性细胞对PYK2和PKCα抑制的诱导,这表明靶向AXL-PYK2-PKCα回路可能是消除TNBC中CSC的有效策略。
国立大学在V. Narry Kim博士的监督下,并与Salk Institute的Fred Gage博士一起进行了博士后研究。她的研究剖析了使用人类胚胎干细胞(HESC)和诱导多能干细胞(IPSC)的非编码RNA在脑功能和疾病中的作用。她的研究为她赢得了许多奖项,包括韩国研究基金会的年轻大脑奖和生命科学研究基金会的博士后奖学金。Daehee Hwang博士是Kaist的博士后研究员。他曾在Dae-Sik Lim博士培训中,是一名博士生,在韩国国家研究基金会获得全球博士学位奖学金。 他继续作为博士后继续研究,探讨了河马/TAZ信号如何调节细胞增殖。他曾在Dae-Sik Lim博士培训中,是一名博士生,在韩国国家研究基金会获得全球博士学位奖学金。他继续作为博士后继续研究,探讨了河马/TAZ信号如何调节细胞增殖。
• TEAD 转录因子是参与细胞增殖、存活和细胞迁移的 Hippo-YAP/TAZ 通路的主要效应物 1 。• 多种人类恶性肿瘤中都报道了通路成分(例如编码 Merlin 蛋白的 NF2)的基因改变,这会导致组成性 YAP/TAZ 核定位和 TEAD 激活 2 。• 临床前研究表明,TEAD 抑制剂 VT3989 可破坏 YAP/TAZ-TEAD 相互作用、抑制 TEAD 转录活性、选择性阻断 NF2 缺陷型间皮瘤体外增殖并抑制 NF2 缺陷型异种移植肿瘤体内生长 3 。• 对大量人类间皮瘤细胞系的筛选表明,未检测到 NF2 突变的细胞系也表现出对 VT3989 的体外敏感性。蛋白质印迹分析表明,这些未检测到 NF2 突变的敏感细胞系对 Merlin 蛋白表达呈阴性。 • VT3989 正在一项正在进行的 1 期临床试验 (NCT04665206) 中进行评估;已证实间皮瘤患者有部分反应。 • 根据基于 NGS 的当地实验室检测,在功能丧失的 NF2 突变患者以及未检测到 NF2 突变的患者中均观察到反应。 • 之前已报道了 Merlin-YAP 双重免疫组织化学 (IHC) 检测 4 。本研究的目的是开发类似的双重 IHC 检测来评估 Merlin 和 YAP 蛋白的表达和共定位,从而为 VT3989 临床反应提供进一步的生物标志物见解。
河马途径调节发育过程中关键细胞过程。在〜10%的人类癌症中,河马途径失调导致YAP/TAZ过度活化,并增加依赖性转录,从而促进肿瘤生长和耐药性 - 通常通过支持药物耐受性持久性生存。在40%的恶性间皮瘤(MM)中,神经纤维瘤病(NF2)基因突变使Merlin蛋白失活,Merlin蛋白是TEAD的上游负调节剂。临床前研究表明NF2突变MM中的高曲线依赖性。我们发现了一系列有效的共价和非共价小分子抑制剂,这些抑制剂占据了te蛋白的棕榈酸盐结合口袋,具有不同的旁系同源物选择性曲线。
1。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2. 宾夕法尼亚州费城宾夕法尼亚大学生物工程系3. 圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2.宾夕法尼亚州费城宾夕法尼亚大学生物工程系3.圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。新泽西州格拉斯伯勒的罗文大学生物医学工程系6。化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。抑制剂在3小时的抑制剂清除之前,在反馈回路闭合之前,恢复了血管的生长,但在8小时时冲洗,比反馈时间尺度更长,在Vivo中为反馈动力学建立了上限和上限。从机械上讲,YAP和TAZ诱导了RhoA信号传导的转录抑制,以维持动态细胞骨架平衡。在一起,这些数据建立了