注意:1. 技术研讨会:CIE 分数将由一个委员会评定,该委员会由担任主席的系主任、指导老师/联合指导老师(如果有)和系的一名高级教员组成。该课程的同一学期和其他学期的所有研究生必须参加研讨会。技术研讨会授予的 CIE 分数将基于对研讨会报告、演讲技巧和问答环节的评估,比例为 50:25:25。2. 实习:所有学生必须在第一和第二学期和/或第二和第三学期的假期期间进行为期 6 周的强制性实习。大学考试将在第三学期进行,规定的学分将在同一学期计算。实习应被视为及格,并应考虑授予学位。那些没有参加/完成实习的人将被宣布为实习课程不及格,并必须在满足实习要求后在随后的大学考试中完成实习。
人工智能 (AI) 是设计为像人类一样思考和行动的机器。将 AI 放入虚拟世界,它们就被称为 AI 代理,它使用从训练中获得的知识在世界中执行任务。虚拟世界中的 AI 代理只能在复杂度和多样性有限的环境中使用专门的模型执行一组狭窄的任务。一个需要代理不断学习和适应各种开放式任务并使用先前获得的知识来确定下一步行动的丰富世界将使代理无能为力。为了研究用于指导代理执行 Minecraft 中的基本任务的 AI 教学方法,以确定哪种 AI 教学方法会产生最佳效果,进行了系统的文献综述,提取了 57 篇论文并确定了适合 AI 代理训练方法和功能的主题和子主题。这是为发现可以实施哪些 AI 训练方法,使代理能够在复杂而丰富的世界中执行任务,从而促进基于游戏的学习。研究发现,将强化学习 (RL) 方法与有效的奖励系统完美结合,可为代理提供必要的知识,使其能够在更复杂的层面上执行任务。RL 集成了一系列独特的方法,例如牛顿动作建议 (NAA)、行为克隆 (BC)、视频预训练 (VPT)、人类演示和自然语言命令,以实现特定目标。这意味着可以通过建立一个深思熟虑的框架来教导代理在复杂的环境中执行开放式任务,该框架涉及如何在各个领域教导代理,从而有可能通过基于游戏的学习将这些教导融入现实世界。关键词:基于游戏的学习;社会 5.0 教育;我的世界强化学习;AI 代理;训练 AI 代理
● 与学生进行清晰且频繁的沟通至关重要。在教师的期望和课堂上人工智能的使用方面,学生需要保持透明。对人工智能使用的期望因班级而异。经常讨论教师的期望、课程学习目标以及它们与相关学习活动和学生作业之间的关系(包括使用生成式人工智能),可以增强学生的学习体验,并最大限度地减少误解或误用的机会。 ● 生成式人工智能系统是技术工具。与 Blackboard、Zoom 甚至谷歌搜索等其他技术工具一样,生成式人工智能可用于积极支持严谨的学习并增强引人入胜的学习体验。 ● 生成式人工智能的使用将不断发展。教师和学生应负责任、有目的地、合乎道德地使用生成式人工智能。 ● 如果课程学习目标支持,教师应设计评估和学习活动,让学生可以利用生成式人工智能作为学习的机会。学生可以更好地实现他们的课程学习目标,并更多地了解使用生成式人工智能的好处和挑战。
OpenAI 于 2022 年 11 月启动的 ChatGPT 引发了关于人工智能对高等教育影响的重要讨论。当学生使用它来撰写论文时,它打破了现状。与谷歌的 Gemini 和微软的 Copilot 一样,OpenAI 的 ChatGPT 是能够模仿人类对话的强大大型语言模型 (LLM) 的典型示例。大型语言模型在识别语言模式和预测上下文单词方面表现出色,并且擅长以最少的用户输入生成连贯且相关的文本响应。通过利用其广泛的训练语言模式数据库,大型语言模型可以提供准确反映用户输入上下文的生成文本响应。凭借对语言的掌握,他们可以创作创意诗歌,撰写全面连贯的文章,深入分析主题,并有说服力地提出论点。
●(1)K-2英语艺术教室老师●(1)K-2数学课堂老师●(1)3-5英语艺术教室老师●(1)3-5数学课堂老师●(1)6-8英语艺术教室老师●(1)6-8数学课堂老师●(1)9-12英语教师教师●(1)教师教师(1)2)(2)2)(2)(2)(1)9-22岁●(1)22 22 22 22 2)教师/领导者●(1)学校系统负责人(数学)●(1)学校系统负责人(ELA)●(1)高等教育英语英语艺术代表或BOR●(1)高等教育数学代表或BOR●(1)路易斯安那州父母
正确的财富管理教育是政府、学校、社会和家庭必须解决的现实问题。美国、日本等国家高度重视财富管理教育,并将其作为重要的教育内容付诸实践[1]。Bryant、Stone和Wier[2]认为个人财富管理知识影响其财富管理态度。Xiao、Tang和Shim[3]指出,如果大学生愿意控制自己对个人财富管理的认知,那么他们会对自己的财富管理状况更加满意,负债也更少,财富管理与身体健康、心理健康和人们的生活呈正相关。财富管理素养提高了财富管理决策[4]。财富管理知识水平与人们的收入和退休准备呈正相关[5]。学生在学校培养的财富管理知识和习惯将成为他们成年生活的一部分,缺乏财富管理知识的学生往往对财富管理有更多负面的认知,并在财务决策中犯错误[6]。
结构稳定性是航空航天、土木工程和机械工程等多个工程专业课程的基础硕士课程。该学科的目标是开发在不同载荷作用下结构稳定性的分析方法,以用于结构元件的设计[1]。在航空航天工程的背景下,结构稳定性硕士课程介绍了常见航空航天结构元件(如梁、板和壳)的屈曲现象[2]。在正常授课中,学生将学习控制每个结构元件屈曲的方程的解析推导。这些数学表示总结和组织了有关现象的定量信息,例如变量之间的关键关系。然而,解析推导表现出高度的数学形式主义、抽象性和复杂性[3]。因此,授课往往侧重于数学程序,而不是它们所代表的物理现象。此外,这些方程式无法为从未经历过屈曲的学生提供完整的物理现象图景[4]。因此,学生往往难以将数学表达式与真实世界场景联系起来,也难以理解结构元件的屈曲行为[3]。为了克服这些限制,可以将屈曲试验演示作为常规教学的补充活动。事实上,实验室试验重现了物理现象[5],因此为学生提供了一个环境,让他们直接体验结构的屈曲,并与不同于分析模型的表达式进行互动。因此,本研究的目的是提供一个原理证明
摘要:这项研究开发了两份问卷,称为技术教学知识知识 - 机器人(TPACK-R)和关于机器人教育(RTBS)的教学信念,以调查94位教师的TPACK-R,并评估他们对机器人教育的态度,信念和动机。这项研究的目的是探索TPACK-R与RTB之间的关系。通过探索性因素分析确定了TPACK-R量表和RTBS量表的因子。 TPACK-R的所有因素与RTB的所有因素之间存在一些正相关。 此外,这项研究还发现,教师的态度是预测其技术教学内容知识知识的关键因素。但是,教师的RPK只能预测RPCK。因子。TPACK-R的所有因素与RTB的所有因素之间存在一些正相关。此外,这项研究还发现,教师的态度是预测其技术教学内容知识知识的关键因素。但是,教师的RPK只能预测RPCK。