在过去十年中,SAAPBT 开展了 20 多个分子遗传技术和生物信息学工具培训项目。这些项目使 200 多名参与者受益,包括来自兽医、农业、医学和纯科学研究和教学领域的教职员工、研究生和博士学者。基于这一经验,SAAPBT 目前正在 Thrissur 的 Mannuthy 兽医和动物科学学院 SAAPBT 组织一项名为“生命科学研究的基本分子遗传技术和生物信息学工具”的培训项目。该项目专为参与生物科学研究或教学的政府和私人机构的教职员工、研究人员和专业人士而设计。对于那些在分子遗传学实验室工作的人来说,它尤其有价值。培训涉及广泛的学科,包括兽医学、农业、医学和基础科学研究。培训分为两个模块,参与者可以选择其中一个模块或两个模块。每个模块都提供有针对性的培训,参与者完成每个模块后都会获得证书。
责任/免责声明的限制,而出版商和作者在准备这项工作方面都尽了最大的努力,但他们对这项工作内容的准确性或完整性没有任何代表或保证,并特别否认所有保证,包括无限制地暗示对特定目的的暗示保证。销售代表,书面销售材料或此工作的促销报表不得创建或扩展保修。在这项工作中将组织,网站或产品作为引用和/或潜在信息来源的事实并不意味着出版商和作者认可组织,网站或产品可能提供或建议的信息或服务。这项工作的出售是为了了解出版商没有从事专业服务。此处包含的建议和策略可能不适合您的情况。您应该在适当的情况下咨询专家。出版商和作者都不应对任何利润损失或任何其他商业损失(包括但不限于特殊,附带,结果或其他损害)负责。此外,读者应意识到,这项工作中列出的网站可能已经改变或消失了这项工作的写作和阅读时。
由于人类对能源储藏,不安全的农业实践和快速工业化的活动增加,在过去几十年中,环境污染一直在增加。土壤污染是所有人中的主要担忧之一,因为土壤污染会通过污染土壤中种植的食物而损害人类,或者可能导致土壤不孕并降低生产力,而在环境和公共卫生方面,由于其毒性引起的环境和公共卫生问题,它们的毒性是:重金属,重金属,重金属,重金属,核废料,农药,温室气体和水力水平。,本章将包括;由于其环保特征,使用生物学手段对土壤污染的来源和污染地点进行修复已被证明有效且可靠。生物修复可以根据几个因素进行现场或原位进行,这些因素包括位点特征,污染的类型和浓度。它也被视为解决新兴污染物问题的解决方案。
摘要:心血管心律失常确实是全球最普遍的心脏问题之一。在本文中,主要目标是开发和评估自动分类系统。该系统采用了电解图(ECG)数据的全面数据库,特别着重于改善少数心律失常类别的检测。在这项研究中,重点是在心律不齐检测的背景下研究三种不同监督机器学习模型的性能。这些模型包括支持向量机(SVM),逻辑回归(LR)和随机森林(RF)。使用真正的患者心电图(ECG)记录进行了分析,这在临床环境中是一种更现实的情况,在临床环境中,ECG数据来自各种患者。该研究根据四个重要指标评估了模型的性能:准确性,精度,召回和F1得分。彻底实验后,结果强调,随机森林(RF)分类器在实验中使用的所有指标中的其他方法都优于其他方法。该分类器的精度令人印象深刻,表明它在准确检测不同患者收集的各种心电图信号中的心律不齐方面有效。
在现代技术时代,聊天机器人是新一代对话服务的重要方面。聊天机器人系统是一种使用自然语言与用户交互的软件程序。聊天机器人是一个虚拟个体,可以使用交互式文本能力与任何人进行有效讨论。最近,聊天机器人作为人机对话媒介的发展取得了长足的进步。机器学习和人工智能聊天机器人系统的目的是模拟人类对话;可能是通过文本或语音。聊天机器人程序通过自然语言处理理解一种或多种人类语言。聊天机器人结构集成了语言模型和计算算法来模拟非正式聊天通信,涵盖了大量的自然语言处理技术。本文探讨了聊天机器人可能有用的其他应用,例如机器对话系统、虚拟代理、对话系统、信息检索、商业、电信、银行、医疗、客户呼叫中心和电子商务。还概述了基于云的聊天机器人技术以及聊天机器人的编程和当前和未来聊天机器人时代的编程挑战。
诱饵:在钓鱼游戏中,不同类型的诱饵用于捕捉不同类型的鱼。同样,网络犯罪分子使用各种类型的诱饵(如钓鱼电子邮件或虚假网站)来诱骗用户点击链接或输入敏感信息。 上钩:一旦鱼上钩,鱼钩就被设置好了。同样,一旦用户陷入钓鱼骗局或下载恶意附件,攻击者就会在系统中立足并开始攻击。 收线:一旦鱼上钩,目标就是快速安全地将其收线。在网络安全中,一旦检测到攻击,目标就是遏制攻击并防止进一步损害。 引诱:在钓鱼游戏中,垂钓者可能会使用诱饵来模仿特定类型鱼的运动并将其吸引到诱饵上。同样,攻击者可能会使用社会工程技术来操纵用户泄露敏感信息或下载恶意软件。 广撒网:在钓鱼游戏中,钓鱼者可能会广撒网以增加捕鱼的机会。同样,攻击者可能会使用群发垃圾邮件活动或其他自动化工具来瞄准大量潜在受害者。
摘要。我们的生活现在围绕社会交流,并且由于阿拉伯文本非常复杂并且包含了许多方言,因此在阿拉伯社交媒体上很难识别出令人反感的语言。本文研究了机器学习模型的实施。使用了选择的分类器,包括决策树,支持向量机,随机森林和逻辑回归。在实验中使用了包含4505个推文的“ ARCYBC”数据集,以评估机器学习模型的性能。根据实验的结果,使用更多运行可以增强机器学习模型的性能,尤其是在精度和召回率方面。随着更多的运行,决策树(DT)和随机森林(RF)分类器显示出更好的回忆和精度,但是DT分类器显示出更好的精度。
#摘要 - 对于传统的自卵葡萄糖监测,建议连续葡萄糖监测(CGM),因为连续的血糖监测在糖尿病管理中已经非常重要。糖尿病 /糖尿病是一种慢性疾病,在全球范围内已成为主要的健康问题。主要是,1型糖尿病和2型糖尿病需要连续的葡萄糖监测以进行疾病管理。最小侵入性方法是当今用于连续葡萄糖监测的主要技术。使用非侵入性方法进行连续的葡萄糖监测是如今的新兴领域,因为与现有的连续葡萄糖监测方法/系统相关的困难。本评论文章介绍了连续葡萄糖监测的重要性,现有的连续葡萄糖监测技术及其新方法,与之相关的困难和缺点以及连续葡萄糖监测的新兴技术。结论指出,需要使用可穿戴,廉价,无创的连续葡萄糖监测方法,该方法具有与糖尿病管理中使用的入侵程序相同的精度水平。关键字 - 连续葡萄糖监测,糖尿病,侵入性,微创,无创
摘要 - 脑机接口 (BCI) 技术的最新趋势和研究已用于情绪感知,研究人员对神经元感兴趣,以分析脑部疾病和障碍。特别是,脑机接口 (BCI) 被机器学习方法用于恢复神经通路或帮助患者通过电子假肢有效互动,在损伤和康复护理中显示出有希望的结果。脑电图 (EEG) 支持的情绪识别和感觉预测引起了人们对以人为本的服务实施方式的兴趣。情绪是人们行为的一个方面,它是 BCI 中的关键整体性能。今天,计算语言学领域的研究人员对情绪关注感兴趣,以评估情绪。EEG 还更有效地评估脑信号,有助于分析神经系统疾病药物,并在与大脑相关的整个神经外科手术中发挥关键作用。本研究旨在回顾已发表的关于情绪识别、认知和脑部疾病特殊检测的论文,在此基础上,再次进行研究分析以概述和说明 Brainwave 情绪投票结果,分析还涵盖了这些层面上的一些最新研究,例如获取 EEG 信号、提取能力、情绪分类和从这些层面预测疾病。将各种计算机视觉技术应用于 BCI 技术并与之结合,表明使用 BCI 治疗脑部疾病可能是一个有前途且不断发展的领域。