有效的灾害风险降低 (DRR) 计划使现代社会能够应对自然灾害。在新西兰,我们的地质动态景观建立在两个板块交界处,会产生一系列灾害,需要认真准备、社会投入和机构间支持。GNS Science 为新西兰的地方和国家政府机构提供了丰富的灾害理解和实施缓解战略的知识。这些在新西兰获得的经验已被证明对类似活跃的国家有用,印度尼西亚就是一个典型的例子。虽然灾害相似,但文化和政府差异意味着在新西兰采取的相同方法不一定适用于印度尼西亚。为了克服这些差异并制定相关计划,GNS Science 与加查玛达大学 (UGM) 合作,帮助在加强印度尼西亚复原力:降低灾害风险 (StIRRRD) 计划中取得有效成果。
有效的灾害风险降低 (DRR) 计划使现代社会能够应对自然灾害。在新西兰,我们的地质动态景观建立在两个板块交界处,会产生一系列灾害,需要认真准备、社会投入和机构间支持。GNS Science 为新西兰的地方和国家政府机构提供了丰富的灾害理解和实施缓解战略的知识。这些在新西兰获得的经验已被证明对类似活跃的国家有用,印度尼西亚就是一个典型的例子。虽然灾害相似,但文化和政府差异意味着在新西兰采取的相同方法不一定适用于印度尼西亚。为了克服这些差异并制定相关计划,GNS Science 与加查玛达大学 (UGM) 合作,帮助在加强印度尼西亚复原力:降低灾害风险 (StIRRRD) 计划中取得有效成果。
肺炎链球菌是发展中国家比发达国家更常见的角膜溃疡病因。我们报告了五例由该细菌引起的角膜溃疡病例,并回顾了细菌性角膜溃疡的文献。在这些患者中,四人患有潜在的全身性疾病,一人身体健康。四名患者的视力低于 6/60,一名患者的视力为 6/18。其中两名患者出现角膜穿孔,需要进行角膜穿刺术。就视力结果而言,两名患者的视力改善至 6/24 和 6/12,另外三名患者的手部运动 (HM) 视力恢复。所有患者均接受了广谱抗生素治疗,随后根据培养敏感性结果进行调整。值得注意的是,肺炎链球菌性角膜炎缺乏特异性溃疡特征,进展迅速,通常导致视力预后谨慎。
与小分子药物或抗体不同,基于细胞的thera可能会通过启动上下文依赖性治疗作用来感知各种输入信号和重新考虑(1,2)。尽管自重组DNA和病毒技术的早期以来,尽管基于基因和细胞的疗法已被视为具有巨大的希望,但在过去的十年中,它们才刚刚开始在制药行业中占据中心地位(3 - 5)。目前,这种疗法的监管部门批准正在加速生物技术和医学的技术革命(6),这些变化有可能在全球经济和社会中产生构造转变。例如,格利贝拉(Glybera)于2012年在欧洲市场上被释放为一种基因治疗疗法,旨在逆转脂蛋白脂肪酶缺乏症,但几年后,每名患者的治疗费用迫使其征收100万美元(5)(5)。,尽管最近批准的嵌合
• 是什么原因导致板块运动? • 为什么有些地方地震发生的频率比其他地方高? • 火山的位置与板块构造有何关系? • 古地磁如何用于确定海底扩张的速度? • 大陆一直处于它们现在的位置吗? • 地球表面的哪些特征表现出伸展、压缩和剪切的影响? • 美国东部的许多山脉由被侵蚀的背斜和向斜组成。 • 最初的褶皱是如何形成的,是什么导致了今天陆地表面的外观? • 美国西部的山脉,如怀俄明州的提顿山脉和加利福尼亚州的内华达山脉,表现出块状断层。解释这些结构的起源。 • 地震学家如何确定地震的震中? • 地震波如何提供有关地球结构和物理特性的信息? • 石油公司如何在试钻前利用地震学来定位可能的石油矿藏? • 地球内层有哪些特点?
扩展具有明显表面表达的外部区域外的地热能使用的关键部分是对地壳热结构有很好的了解。但是,新西兰大部分地区的地壳温度分布尚不清楚。高质量的地壳温度测量值稀疏且分布不均。此外,新西兰的热流动方式很复杂,对流体对流和对流的影响很大,以及与相对年轻且高度构造的陆地相关的瞬态过程(例如,最近的沉积和侵蚀)。由于缺乏关于地壳岩石热性能的良好数据,预测地壳温度的进一步限制。我们正在使用一维瞬态热流建模方法开发国家温度图。为了支持该模型,我们已经建立了热性能测量能力,并将测量与地球化学和矿物学数据结合使用来确定热性能。本文为将各种数据集集成到新西兰的国家温度模型中介绍了进展。
[1] E. Galin,E。Guérin,A。Peytavie,G。Cordonnier,M.-P。 Cani,B。Benes,J。收益,数字地形建模的评论,计算机图形论坛,38(2),第553-577页,2019年。[2] K.地球和行星科学的年度评论32,1,151-185,2004。[3] J. Braun和S. D. Willett,一种非常有效的O(n),隐式和平行方法,用于求解控制河流切口和景观演化的流功率方程,《地貌学》,第1卷。180–181,pp。170–179,2013,[4] G. Cordonnier等人,《构造隆起和河流侵蚀》的大规模地形生成,计算机图形论坛,第1卷。35,否。2,pp。165–175,2016 [5] G. Cordonnier,G。Jouvet,A。Peytavie,J。Braun,M.-P。 Cani,B。Benes,E。Galin,E。Guérin,J。 获得,通过冰川侵蚀形成地形,图形上的ACM交易,42(4),第1-14页,2023年165–175,2016 [5] G. Cordonnier,G。Jouvet,A。Peytavie,J。Braun,M.-P。 Cani,B。Benes,E。Galin,E。Guérin,J。获得,通过冰川侵蚀形成地形,图形上的ACM交易,42(4),第1-14页,2023年
摘要 基于概率的经验方法被用作预测与岩体性质相关的不确定性的替代方法。重点是开发概率电子表格来预测岩体分类指标。构建直方图来描述预测岩体性质的最佳分布。开发的模型还有助于预测岩体内部不连续性对岩石强度和岩体分类系统的影响。统计分析确定体积节理数、节理间距、节理频率和岩石强度是最具影响的参数。此外,统计分析显示不同岩体性质之间存在不同程度的相关性。虽然一些属性显示出适合建模的显着相关性,但其他属性与任何相关模型都不太吻合。结果强调需要一种全面的岩体表征方法,考虑体积节理数以外的多种因素。地质复杂性,包括构造活动和风化过程,可能会掩盖直接相关性。这些结果强调了经验建模和详细现场调查对于准确评估喜马拉雅岩体质量和稳定性的重要性。
量子计算基于量子力学原理,能够为多种业务运营带来巨大变革。传统计算机使用比特,而量子计算机使用量子比特,允许叠加和纠缠,从而使设备能够以以前无法实现的方式处理信息。本文介绍了量子计算的基本原理、操作机制和当前发展状况。它还研究了优化、密码学、药物发现、金融服务、人工智能、材料科学、能源部门、消费品、物流、运输和电信等业务的详细应用。讨论展示了量子计算在解决问题、数据分析、系统优化、安全、产品开发、人工智能、预测和竞争优势方面带来的好处。它还涉及可扩展性、退相干和算法开发方面的挑战。它分析了量子计算与业务运营之间的相互作用,以确定量子发展如何重新定义整个行业,实现结构性转变,从而大幅提高效率、催生创新并建立无与伦比的竞争优势。
地球.8.E 解释板块构造如何解释地质过程,包括海底扩张和俯冲,以及海脊、裂谷、地震、火山、山脉、热点和热液喷口等特征;地球.8.C 研究新的数据概念解释和创新地球物理技术如何导致当前的板块构造理论;地球.8.F 使用与速率、时间和距离相关的方程式计算板块的运动历史,以预测未来的运动、位置和由此产生的地质特征;地球.8.G 使用地震和火山分布的证据来区分汇聚、发散和变换板块边界的位置、类型和相对运动;地球.8.H 评估板块构造在地球子系统的长期全球变化中的作用,例如大陆沉积、冰川作用、海平面波动、大规模灭绝和气候变化。 Astro.5.B 研究和评估包括托勒密、哥白尼、第谷·布拉赫、开普勒、伽利略和牛顿在内的科学家的贡献,因为天文学从地心模型发展到日心模型;Astro.16.E 研究和描述天文学的当前发展和发现;