近年来,医学图像分割研究和对这一问题的需求正在迅速增加。医学图像中待诊断区域的半自动或全自动分割为医生的诊断提供了重要的便利。特别是在一些缺乏医生的国家,将提供全自动分割方法,以在没有医生的情况下协助治疗。在本研究中,研究了肺炎患者和健康个体的肺部X射线图像。X射线图像具有优势,因为它们比其他成像方法更便宜且更容易解释。X射线图像是从现成的数据集中获取的,图像集由5岁以下儿童的胸部X射线图像组成。从收到的数据集中研究了总共15个人(5名健康人,5名肺炎(病毒)患者,5名肺炎(细菌)患者)。MATLAB程序用于肺部区域分割。为了进行分割,首先将图像放入MATLAB后缩小到合适的尺寸。然后,通过增加图像的对比度,使用适当的滤波器设计进行滤波和阈值处理。使用图像分割工具进行阈值处理。与其他研究不同,使用主动轮廓法进行肺分割。主动轮廓操作通过在肺边界内外绘制倾斜来实现能量最小化,迭代持续到达到平衡,从而确定肺边界。在主动轮廓程序之后,应用形态学程序,去除肺部区域并计算面积。结果,使用主动轮廓模型和图像处理程序进行半自动分割。患者和健康个体的肺部大小之间存在显着差异。旨在开发一种全自动分割算法,该算法可在未来推广到每个患者。关键词:胸部X光(CXR),肺炎,MATLAB,分割,主动轮廓模型(ACM)
摘要 工业化和全球经济的快速发展导致工作场所伤害和事故数量增加。如今,随着技术的进步和可靠性,由设备和机械故障引起的事故似乎正在减少。然而,人为因素往往成为工作场所事故的重要因素。统计报告和证据表明,大约 80% 到 90% 的工作相关事故可归因于人为因素。值得注意的是,人为事故的概念随着时间的推移而演变。几十年前,人为事故被定义为人与机器之间的接触、工作场所或操作系统内不良的工作场所和设备设计。近年来,对人为事故的研究呈现出变化的趋势。人们更多地关注导致工作场所人为事故的个人因素和组织因素。此外,工作场所的安全沟通在减少人为事故方面发挥着至关重要的作用。工人和领导之间的有效沟通被认为有助于降低人为事故发生的风险。因此,本研究回顾了人为事故和安全沟通方面的文献。为探讨安全沟通与人为事故的关系,向制造企业生产工人发放300份调查问卷
主要产品 工业及公共服务应用电气设备;热电联产系统;金属热处理机;半导体制造设备;振动输送系统;零件送料机;计算机控制器
F.V/Time 15min 30min 45min 1h 2h 3h 4h 5h 8h 10h 20h 1.60V 595.9 397.2 285.0 254.1 157.5 105.9 89.0 72.0 47.4 42.4 23.3 1.65V 585.0 390.0 279.8 249.5 154.7 104.0 87.4 70.7 46.6 41.6 22.9 1.70V 574.2 382.8 274.7 244.9 151.8 102.0 85.7 69.4 45.7 40.8 22.4 1.75V 563.4 375.6 269.5 240.2 148.9 100.1 84.1 68.1 44.8 40.0 22.0 1.80V 541.7 361.1 259.1 231.0 143.2 96.3 80.9 65.5 43.1 38.5 21.2注意:以上数据是平均值,可以在3个电荷/放电周期内获得。这些不是最小值。单元格和电池设计/规格会经过修改,恕不另行通知。有关最新信息,请联系Cspower。
印度尼西亚自 2012 年开始专注于机场业务。过去 3 年,PT Jaya Teknik Indonesia 为新机场设计和供应了许多系统,例如自动行李处理和在线安检系统、机场 IT 系统(例如航班信息系统、安全监控和管理系统、通信和计算机网络以及许多其他子系统)。
©2015 Penerbit Utm出版社。保留的所有权利1.0简介时间标记发生器用于触发单声,SCR,IGBT,GTO,CRT的扫流电压等[1]。使用比较器,集成器和剪子生成正弦波输入的时间标记。比较器中的方波输出应用于RC系列电路的输入。如果串联电路的时间常数小于正弦波输入的时间段t,则RC网络充当积分器。因此,积分器的输出是一系列正脉冲和负脉冲。这一系列的脉冲应用于剥离的负脉冲的剪子电路,然后最终输出是阳性脉冲的火车,确保持续时间与输入正弦信号的时间段等于时间t。通常,该电路很容易使用操作放大器(op-
经济、技术、社会和环境变化的加速要求管理者和决策者以越来越快的速度学习,而与此同时,我们所生活的系统的复杂性也在不断增加。我们现在面临的许多问题都是我们过去行为的意外副作用。我们为解决重要问题而实施的政策常常会失败、使问题恶化或产生新问题。在一个日益复杂的动态世界中,有效的决策和学习要求我们成为系统思考者——扩展我们思维模型的边界,开发工具来理解复杂系统的结构如何创造它们的行为。本书向您介绍了用于分析政策和战略的系统动力学建模,重点是商业和公共政策应用。系统动力学是一种视角和一套概念工具,使我们能够理解复杂系统的结构和动态。系统动力学也是一种严格的建模方法,使我们能够构建复杂系统的正式计算机模拟,并使用它们来设计更有效的政策和组织。这些工具结合起来,使我们能够创造管理飞行
DCU 从整个飞机的传感器和设备收集离散输入、模拟信号和数字数据,然后将它们转换为数字格式,以便通过飞行控制或飞机管理系统的数据总线进行传输(通常是 ARINC 429、ARINC 664/AFDX、CAN 总线、以太网、MIL-STD-1553、RS-422、RS-485)。
DCU 从整个飞机的传感器和设备收集离散输入、模拟信号和数字数据,然后将其转换为数字格式,以便通过飞行控制或飞机管理系统的数据总线进行流式传输(通常是 ARINC 429、ARINC 664/AFDX、CAN 总线、以太网、MIL-STD-1553、RS-422、RS-485)。