1 加州理工学院喷气推进实验室,4800 Oak Grove Drive,帕萨迪纳,CA 91109,美国 2 Tellus1 Scientific,亨茨维尔,AL 35899,美国 3 亚利桑那大学天文系和斯图尔特天文台,933 N. Cherry Ave.,图森,AZ 85719,美国 4 斯坦福大学,382 Via Pueblo Mall,物理系,斯坦福,CA 94305-4060,美国 5 戈达德太空飞行中心,8800 Greenbelt Rd,格林贝尔特,MD 20771,美国 6 艾姆斯研究中心,PO Box 1,莫菲特菲尔德,CA 94035-1000,美国 7 欧洲南方天文台,Alonso de C´ordova 3107,维塔库拉,圣地亚哥,智利 8 太空望远镜科学研究所,3700 圣马丁9 太空望远镜科学研究所,史蒂文·穆勒大楼,3700 San Martin Drive,巴尔的摩,马里兰州 21218,美国 10 普林斯顿大学,新泽西州普林斯顿 08544,美国 11 IPAC,MC 314-6,加州理工学院,加利福尼亚州帕萨迪纳,91125
南希·格雷斯·罗曼太空望远镜上的日冕仪 (CGI) 将通过直接成像木星大小的行星和碎片盘,展示从太空进行可见光系外行星成像和光谱分析所需的高对比度技术。这次太空体验是朝着未来更大规模任务迈出的关键一步,这些任务的目标是直接成像附近恒星宜居带中的类地行星。本文概述了当前的仪器设计和要求,重点介绍了正在演示的关键硬件、算法和操作。我们还介绍了由这些功能实现的几个系外行星和恒星周围盘科学案例。一个通过竞争选拔的社区参与计划团队将成为技术演示的一个组成部分,如果仪器性能允许,他们可以在初始技术演示之外进行额外的 CGI 观测。
目前,检测系外行星的地面和空间仪器只能看到明亮,年轻的系外行星比他们的寄宿明星几倍。罗马冠冕将能够比这比这比这更详尽地发现行星。,它将能够检测到与迄今为止检测到的任何其他Coronagraph相比,绕着其宿主星的旋转距离距离宿主明星要近得多。
§大理石成像作为与Scanway S.A.的财团的主要承包商,已与育成计划的框架与欧洲航天局签署了一份合同 - 由ESAφ-LAB投资办公室管理,以开发非常高分辨率(VHR)的光下有效负载。§有效载荷包括一个可见的,近红外成像仪和高分辨率的短波红外成像仪。§光学有效载荷将在计划在2026年第一季度和随后的大理石星座上推出的第一颗大理石卫星飞行。§由ESA孵化计划资助的为期两年的项目涵盖了第一颗大理石卫星的有效载荷的完整开发,整合和调试。“在这里,在φ-LAB投资办公室,我们致力于支持欧洲工业,并不断实现地球观察项目的技术和商业进步。我们对Semovis项目及其开发VHR有效载荷和数据的雄心感到兴奋。”负责这项活动的ESA技术官员Pejman Nejadi说。“成功的结果将与该机构的更广泛目标保持一致,即利用空间来实现绿色的未来,快速而有弹性的危机,以命名一些。”
1 National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720, USA 2 Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 3 LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Sorbonne Paris Cite, 5 place Jules Janssen,92195法国Meudon 4悉尼天体仪器仪器实验室,悉尼大学物理学院,悉尼大学,悉尼,新南威尔士州,新南威尔士州2006年,澳大利亚5澳大利亚5管家,亚利桑那州图森大学,亚利桑那大学,亚利桑那州85721,美国6 USICAL SCIENCES 6 ARIZONES,ARIZONE,INSIZONA,TUCSON,TUCSON,TUCSON,AZ 85721,AZ 85721111 BLVD,PASADENA,CA 91125,美国8韩国天文学与太空科学研究所(KASI),大韩民国大道34055,加利福尼亚大学9,加利福尼亚大学,欧文分校,G302 C学生中心,CA 92697,CA 92697,CA 92697,美国10号加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,405 Hilgard Averentry,Ca 90095. 90095,美国90095. 9009595.物理学,悉尼大学,新南威尔士大学,2006年,澳大利亚12 AAO-USYD,悉尼大学物理学院,悉尼,悉尼,2006年,2006年,澳大利亚13,佛罗里达州中央佛罗里达大学4304 Scorpius ST,Orlando Scorpius ST,Orlando 4304东京大学,东京邦基 - 库7-3-1,日本113-0033,日本16 Naoj,2-21-1-1-1-1-1-1-1-1-171-8588,日本17物理与天文学系,得克萨斯大学,得克萨斯大学,得克萨斯大学,位于圣安东尼奥,圣安东尼奥,圣安东尼奥,TX 78006,美国TX 788006,美国18 Univ。Grenoble Alpes,CNRS,IPAG,414 Rue de la Piscine,38400 Saint-Martin-D'Hères,法国,
摘要。我们描述了将在2.4 m Nancy Grace Roman Space望远镜上飞行的冠状器仪器(CGI)的光子计数摄像头系统的飞行电子乘电荷耦合设备(EMCCD)的开发。罗马是一项NASA旗舰任务,它将研究暗能量和暗物质,并在2020年代中期计划推出,寻找系外行星。CGI旨在证明高对比度成像和系外行星光谱所需的技术,例如高速波浪前传感和指向控制,具有可变形镜的自适应光学器件以及具有光子计数,可见敏感的(350至950 nm)检测器的超级噪声信号检测。相机系统是这些演示的核心,需要在高达1000帧-S -1时自适应地感知微弱和明亮的目标(10-4-10 7计数-S-1),以向仪器控制环提供必要的反馈。该系统包括两个相同的摄像机,一个相机表现出微弱的光科学能力,另一个用于提供仪器指向的高速实时感知。我们在喷气推进实验室(美国加利福尼亚州帕萨迪纳)的计划评估了辐射损坏的商业EMCCD传感器的低信号性能,并将这些测量作为与开放大学(米尔顿·凯恩斯(Milton Keynes),英国王国和泰瑞德尼·凯恩(Milton-Ekeynes)和泰瑞德尼(Teledyne-e2V)(泰瑞德尼(Teledyne-E2V))(英国凯尔多·金(Chelden-e2v)(英国凯尔多·金(Cheldne-E2V),英国王者),对靶向辐射硬化修饰进行了基础。然后开发了一对具有测试功能的EMCCD,并在此报告其低信号性能。©作者。[doi:10 .1117/1.Jatis.9.9.1.016003]该程序导致了EMCCD的飞行版本的开发,其低信号性能在暴露于2.6×10 9质子-CM-2(10 MeV等效)后,超过三倍以上。飞行EMCCD传感器是通过与Teledyne-E2V(英国切尔姆斯福德)的合同来贡献的。我们将描述用于评估光子计数性能的程序要求,传感器设计,测试结果和指标。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。
用于观测近地空间的新型双管望远镜 OM Kozhukhov 国家空间设施控制和测试中心,乌克兰基辅 OB Bryukhovetsky、DM Kozhukhov、VI Prysiaznyi、AP Ozerian、OM Iluchok、VM Mamarev、OM Piskun 国家空间设施控制和测试中心,乌克兰基辅 摘要 2021 年底,乌克兰国家航天局在外喀尔巴阡地区安装了一台新望远镜,以观察近地空间物体,以满足乌克兰空间监测与分析系统的利益。该望远镜由两个管子(0.35 m、f/2.0 和 0.25 m、f/12.0)组成,安装在一个带直接驱动的赤道仪上,并配备 CMOS 摄像机。望远镜和摄像机由原始软件控制。我们将介绍该望远镜的设计和各个系统,以及使用它观测不同轨道的近地空间物体的初步结果。1.引言光学传感器是空间态势感知(SSA)的重要信息来源。它们可以高度精确地估计近地驻留空间物体(RSO)的角坐标和视亮度,从而优化它们的轨道并确定它们的状态。它们可以观测从低地球轨道(LEO)到地球静止轨道(GEO)及更远的所有可能轨道上的RSO。光学观测对于中轨道(高度20,000 km)和高轨道(GEO及以上)的物体尤其重要,因为这些轨道上难以使用雷达。尽管光学传感器有诸多优点,但也存在严重的局限性。它们大多数只能在夜间工作,而且与雷达不同,它们严重依赖天气(多云)。此外,大多数光学传感器在观测低地球轨道物体时吞吐量相对较低[1]。部分抵挡后两个限制的方法是制造新的传感器。同时,光学传感器面临的各种任务通常需要不同的工具才能最有效地发挥作用。这个问题可以通过在同一支架上组合不同类型的镜头来解决,如下所述。还应该注意的是,在不同的国家[2]-[4]已经在一个支架上安装两个相同和不同的镜头很长时间了。2.望远镜规格望远镜是位于乌克兰西部扎喀尔巴阡地区(图1)的光电光电观测站3型(OEOS-3)的一部分。喀尔巴阡山脉将它与该国其他地区隔开,因此这里的气候条件与乌克兰其他地区有显著不同。它使我们假设,当乌克兰其他地区多云时,该地区的传感器可能具有良好的观测条件,反之亦然。 OEOS-3望远镜由安装在同一赤道仪上的两个镜头组成(图2):一个宽视场(WFoV)汉密尔顿镜头和一个窄视场(NFoV)马克苏托夫镜头。两款镜头均配备 QHY-174M GPS CMOS 相机(图 3)。它们以相对较低的价格提供准确的观测时间。这对于 LEO 观测尤其重要。该支架配备直接驱动器。该驱动器提供 20 度/秒的最大旋转速率,并跟踪近地轨道上的任何 RSO。望远镜的特性如表 1 所示。
The next generation planetary radar system on the Green Bank Telescope Patrick A. Taylor National Radio Astronomy Observatory, Green Bank Observatory Steven R. Wilkinson Raytheon Intelligence & Space Flora Paganelli National Radio Astronomy Observatory Ray Samaniego, Bishara Shamee, Aaron Wallace Raytheon Intelligence & Space Anthony J. Beasley Associated Universities Inc., National Radio Astronomy Observatory ABSTRACT The National Radio天文学天文台(NRAO),绿色银行天文台(GBO)和雷神智能与空间(RIS)正在为绿色银行望远镜(GBT)设计高功率的下一代行星雷达系统。作为一个试点项目,由RIS设计的低功率,KU波段发射器(在13.9 GHz时高达700 W)集成在GBO的100米GBT上,并在NRAO的TEN 25米长基线阵列(VLBA)Antennas上收到了雷达回声。这些观察结果产生了最高分辨率,基于地面的,合成的孔径雷达图像,在有史以来收集到的月球上的某些位置,提供了已销售的卫星的大小和旋转状态特征,并以21亿米的距离(〜5.5个月球距离)检测到近地球的小行星。设计工作继续以使用VLBA的500 kW,KU频段行星雷达系统的最终目标,使用VLBA和未来的下一代非常大的阵列(NGVLA)作为接收器,具有目标表征和成像的能力,用于太空情境/领域的意识和行星科学/行星科学/国防。作为近期的下一步,中等功率的KU波段发射器(至少为10 kW)的集成将在GBO/NRAO上开发端到端系统以进行实时雷达观测。1。引入空间意识,空间中自然和/或人为物体的预测知识和表征是美国(美国)空间活动的关键能力。在美国进行雷达天文学和行星防御的高功率雷达基础设施通常依靠国家科学基金会(NSF)的资产和国家航空航天及空间管理局(NASA)来执行这一任务。自2020年以来,波多黎各的Arecibo天文台威廉·E·戈登(William E. Gordon)望远镜倒塌,美国科学界对高功率雷达观察的访问已大大减少,从而使加利福尼亚州的70 m金石望远镜(DSS-14)在加利福尼亚州的高空网络中,仅在加利福尼亚州的一部分中,唯一的范围是一个范围的范围。在Arecibo崩溃时,Associtions Inc.(AUI)管理国家射电天文学观测站(NRAO)和绿色银行观测站(GBO),以及合作伙伴雷神智能与空间(RIS)刚刚使用100-m Robert C. Byrd Green Bank Telescope(gbt) 1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。 GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。 在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。详细信息在[1]中提供。在这里,我们讨论了2020年11月和2021年3月进行的GBT/VLBA雷达观察的实验和结果,以及针对高功率,下一代行星雷达系统的计划。NRAO/GBO/RIS团队目前正在开发的新技术具有直接解决和克服损失Arecibo望远镜造成的科学能力差距的潜力。除了实现前所未有的科学外,我们的下一代行星雷达系统还可以添加
摘要:研究大型空间望远镜(LST)的概念设计和在轨装配任务规划问题。提出了分段式镜面设计,并开发了考虑机械手工作空间覆盖范围的机器人装配概念。为了减少在轨装配周期并保护易碎的镜面结构,采用几种新算法优化机器人装配路径。首先,建立装配路径与装配件数之间的映射,快速生成优化问题的候选解。其次,提出了结合蚁群算法和遗传算法的两级混合优化框架。混合优化方法能够快速收敛到接近全局最优解。通过仿真验证了所提出的模型和算法,结果表明所开发的方法可以显著提高LST的在轨装配任务效率。 © 2020 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.JATIS.6.1.017002]