摘要 - 在本文中,我们使用原始加固学习(RL)方法提出了一种基于学习的非线性模型预测控制器(NMPC),以学习NMPC方案的最佳权重。控制器用作深度预期SARSA的当前动作值函数,其中通常用次级NMPC获得的后续动作值函数与神经网络(NN)近似。在现有方法方面,我们添加了NN的输入NMPC学习参数的当前值,以便网络能够近似行动值函数并稳定学习性能。另外,在使用NN的情况下,实时计算负担大约减半而不会影响闭环性能。此外,我们将梯度时间差异方法与参数化的NMPC结合在一起,作为预期的SARSA RL方法的函数近似函数,以克服函数近似中存在非线性时克服潜在参数的差异和不稳定性问题。仿真结果表明,所提出的方法在没有不稳定性问题的情况下收敛到本地最佳解决方案。
目的:颞叶癫痫 (TLE) 的特征是边缘系统(尤其是海马)中反复发作癫痫。在 TLE 中,从齿状回颗粒细胞 (DGC) 中反复出现的苔藓纤维在 DGC 之间形成异常的致癫痫网络,该网络通过异位表达的含 GluK2/GluK5 的海人酸受体 (KAR) 起作用。TLE 患者通常对抗癫痫药物有抵抗力,并患有严重的合并症;因此,迫切需要新的治疗方法。之前,我们已经证明 GluK2 基因敲除小鼠可以免受癫痫发作的影响。本研究旨在提供证据,证明使用基因疗法下调海马中的 KAR 可以减少 TLE 中的慢性癫痫放电。方法:我们将分子生物学和电生理学结合到啮齿类 TLE 模型和从耐药性 TLE 患者手术切除的海马切片中。结果:在这里,我们确认了使用非选择性 KAR 拮抗剂抑制 KAR 的转化潜力,该拮抗剂显着减弱了 TLE 患者来源的海马切片中的发作间期样癫痫样放电 (IED)。表达抗 grik2 miRNA 的腺相关病毒 (AAV) 血清型 9 载体被设计为特异性下调 GluK2 表达。将 AAV9-抗 grik2 miRNA 直接递送到 TLE 小鼠的海马中可显着减少癫痫发作活动。TLE 患者海马切片的转导降低了 GluK2 蛋白的水平,最重要的是,显着减少了 IED。解释:我们抑制异常 GluK2 表达的基因沉默策略可抑制小鼠 TLE 模型中的慢性癫痫发作以及来自 TLE 患者的培养切片中的 IED。这些结果为针对耐药性 TLE 患者的 GluK2 KAR 基因治疗方法提供了概念验证。ANN NEUROL 2023;00:1 – 17
摘要 - 许多研究表明,可以从脑电图数据中解码听觉对自然语音的关注。但是,大多数研究都集中在选择性的听觉注意力解码(SAAD)上,而竞争扬声器则是对单个目标的绝对听觉注意解码(AAAD)的动态。AAAD的目标是衡量对单个演讲者的关注程度,在心理和教育环境中的客观衡量注意力。为了调查这种AAAD范式,我们设计了一个实验,主题在不同的细心条件下听到视频讲座。我们训练了神经解码器,以在基线的细节状态重建脑电图中的语音信封,并使用解码和真实语音信封之间的相关系数作为注意语音的指标。我们的分析表明,1-4 Hz频段中语音包膜的包络标准偏差(SD)与该指标在语音刺激的不同段之间密切相关。然而,这种相关性在0.1-4 Hz频段中削弱,其中专注状态和注意力不集中的状态之间的分离程度变得更加明显。这突出了0.1-1 Hz范围的独特贡献,从而增强了注意状态的区别,并且仍然受到混杂因素的影响,例如语音信封的时变动态范围。
脑部计算机界面(BCIS)可以从神经活动中解释想象的语音。但是,这些系统通常需要广泛的培训课程,参与者想象地重复单词,从而导致精神疲劳和困难识别单词的发作,尤其是在想象单词序列时。本文通过转移经过公开语音数据培训的分类器来掩盖语音分类,从而解决了这些挑战。我们使用了源自希尔伯特包络和时间精细结构的脑电图(EEG)特征,并将它们用于训练双向长短记忆(BILSTM)模型进行分类。我们的方法减轻了广泛的培训和实现最先进的分类精度的负担:公开语音的86.44%,使用公开的语音分类器的秘密语音为79.82%。
脑机接口 (BCI) 可以从神经活动中解码想象中的语音。然而,这些系统通常需要大量的训练,参与者在训练中想象重复单词,这会导致精神疲劳和难以识别单词的开头,尤其是在想象单词序列时。本文通过将在显性语音数据中训练过的分类器转移到隐性语音分类中来解决这些挑战。我们使用了从希尔伯特包络和时间精细结构中得出的脑电图 (EEG) 特征,并使用它们来训练双向长短期记忆 (BiLSTM) 模型进行分类。我们的方法减轻了大量训练的负担,并实现了最先进的分类准确率:使用显性语音分类器,显性语音的准确率为 86.44%,隐性语音的准确率为 79.82%。
大脑活动由振荡和宽带心律失常成分组成;然而,在运动研究中,人们更多地关注振荡感觉运动节律,而宽带心律失常脑电图 (EEG) 的时间动态仍未被探索。我们之前已经证明,宽带心律失常脑电图包含短距离和长距离时间相关性,这些相关性在运动过程中会发生显著变化。在本研究中,我们以之前的工作为基础,更深入地了解宽带脑电图中长距离时间相关性 (LRTC) 的这些变化,并将它们与文献中常见的众所周知的 alpha 振荡幅度 LRTC 进行对比。我们使用两个独立的 EEG 数据集(这两个数据集以两种不同的范式记录)来调查和验证五种不同类型的运动和运动想象任务期间 LRTC 的变化——我们的手指敲击数据集(包含单次自我发起的异步手指敲击)和公开可用的 EEG 数据集(包含提示的拳头和脚的连续运动和运动想象)。我们通过对单次试验 2 秒 EEG 滑动窗口进行去趋势波动分析,量化了宽带 LRTC 的瞬时变化。与静息状态相比,宽带 LRTC 在所有运动任务中均显著增加(p < 0.05)。相反,必须在较长的拼接 EEG 段上计算的 alpha 振荡 LRTC 显著下降(p < 0.05),与文献一致。这表明在运动和运动想象过程中,潜在的快速和慢速神经元无标度动力学是互补的。单次试验宽带 LRTC 在所有运动执行和想象任务中均具有较高的平均二元分类准确率,范围为 70.54 ± 10.03 % 至 76.07 ± 6.40 %,因此可用于脑机接口 (BCI)。因此,我们证明了新型运动神经相关性单次试验宽带 LRTC 在单个异步和提示连续运动-BCI 范式中的不同运动执行和想象任务中的普遍性、稳健性和可重复性,以及它与 LRTC 在 alpha 振荡幅度方面的对比行为。
报道了一种高度稳定的垂直外腔二极管泵浦无循环液体染料激光器。该设计简单(无需制造工艺步骤,无流体回路)、紧凑(~ cm 大小)且经济高效。报道的光学效率为 18%,M² 为 1,具有出色的光稳定性——在 50 Hz 下 140 万次脉冲后效率没有下降,该值与流动系统相当,远高于有机固态激光器可实现的值。我们表明热效应是该激光器稳定性和动力学的核心。详细研究了不同泵浦脉冲持续时间/重复率的激光建立和关闭动力学;它们表明,随着泵浦脉冲持续时间和重复率的增加,脉冲缩短,这被证明是由于热透镜衍射损耗造成的。这种激光结构为测试或收获可溶液处理的增益材料提供了一个非常方便和简单的平台。
本研究通过一种扩展经典流行阈值理论的新型理论框架研究了猴痘病毒 (MPXV) 的动态。引入了双阈值理论,强调了时间依赖性基本再生数和易感人群密度之间的相互作用。研究表明,当时间依赖性再生数大于阈值 1 且任何时间的易感人群密度大于易感人群的临界阈值密度时,就会引发流行病。该模型结合了之前天花疫苗接种的免疫力减弱和之前 MPXV 感染的免疫力丧失,揭示了高传播情景下的复杂流行病行为,例如振荡波、长期爆发和流行间隔期延长。敏感性分析确定了流行病开始和发展的关键驱动因素,强调了免疫力减弱和人畜共患宿主的关键影响。公共卫生影响强调了有针对性的疫苗接种运动、灭鼠和持续监测对于降低流行病风险和防止复发的重要性。这项研究为管理 MPXV 疫情提供了可行的见解,而双阈值框架为理解疫苗交叉免疫和人畜共患疾病减弱的动态提供了坚实的理论基础。
摘要 - 网络威胁的快速发展已经超过了传统的检测方法,需要创新的措施,能够解决现代对手的适应性和复杂性。一个新颖的框架是构造的,利用时间相关图来建模恶意操作中固有的复杂关系和时间模式。该方法动态捕获的行为异常,提供了一种可靠的机制,可在实时场景中区分良性和恶意活动。广泛的实验证明了该框架在各种勒索软件家族中的有效性,其精度,召回和总体检测准确性始终如一。比较评估强调了其比传统的基于签名和启发式方法更好的表现,尤其是在处理多态性和以前看不见的勒索软件变体方面。该体系结构的设计考虑到可扩展性和模块化,确保与企业规模环境的兼容性,同时保持资源效率。对加密速度,异常模式和时间相关性的分析提供了对勒索软件运营策略的更深入的见解,从而验证了该框架对不断发展的威胁的适应性。该研究通过整合动态图分析和机器学习来推进网络安全技术,以在威胁检测中进行未来的创新。这项研究的结果强调了改变组织检测和减轻复杂网络攻击的方式的潜力。