在定向能量沉积 (DED) 中,局部材料微观结构和抗拉强度由零件上每个空间位置经历的热历史决定。虽然先前的研究已经调查了热历史对机械性能的影响,但仍然需要一种物理上可解释、简约且具有良好预测精度的抗拉强度预测模型。本文研究了一种基于 Shapley 加性解释 (SHAP) 模型解释的数据驱动预测模型来解决这一问题。首先,将从先前的实验工作中翻译出来的物理上有意义的热特征用作神经网络的输入,以进行抗拉性能预测。然后计算各个输入特征的 SHAP 值,以量化它们各自对抗拉性能预测的影响,并使用累积相对方差 (CRV) 度量降低模型复杂性。对实验获得的 Inconel 718 (IN718) 抗拉强度的预测表明,通过开发的方法量化的特征影响可以通过先前研究的结果来验证,从而证实了神经网络预测逻辑的物理可解释性。此外,基于CRV的模型复杂度降低表明,简约模型只需要不到10%的原始特征即可达到与先前文献报道相同的拉伸强度预测精度,从而证明了基于SHAP的特征降低方法在改进DED过程表征方面的有效性。
活化的碳(AC)可以添加到聚合物基质中以实现电导率,从而导致潜在的传感器应用。在这项研究中,我们评估了与聚苯二甲酸酯(PBT)/聚酰胺6(PA6)混合物混合时AC的拉伸强度。PBT/ PA6/ AC复合材料是通过0、2、4、6、8和10%AC的注射成型制备的。在国际标准化组织527标准组织之后,对样品进行了拉伸测试。PBT/PA6/2%AC,PBT/PA6/4%AC,PBT/PA6/6%AC和PBT/PA6/8%AC样品的拉伸强度分别为45.13、44.60、42.48和41.82 MPA。这些值高于没有AC的PBT/PA6混合物的(40.93 MPa)。将AC掺入PBT/PA6混合物中会增加拉伸强度。PBT/PA6/2%AC样品具有最高的拉伸强度,而PBT/PA6/10%AC样品的拉伸强度比PBT/PA6混合物低39.79 MPa。所有PBT/PA6/AC样品的拉伸模量高于PBT/PA6混合物。将AC添加到PBT/PA6混合物中时,微结构变得更小,更细,增强了凝聚力并改善机械性能。这项工作中分析的方法的可疑应用领域是,PBT/PA6混合物可以用少量AC回收为导电聚合物复合材料。
增材制造已从一种快速成型技术发展成为一种能够生产高度复杂零件的技术,而且这些零件的机械性能优于传统方法。利用激光加工金属粉末,可以加工任何类型的合金,甚至金属基复合材料。本文分析了激光粉末床熔合加工的 316L 不锈钢的拉伸和压缩响应。通过光学显微镜评估了所得的微观结构。关于机械性能,确定了屈服强度、极限拉伸强度、断裂前伸长率、抗压强度和显微硬度。结果表明,微观结构由堆叠的微熔池构成,由于高热梯度和凝固速度,熔池内形成了细胞状亚晶粒。抗压强度(1511.88 ± 9.22 MPa)高于拉伸强度(634.80 ± 11.62 MPa)。这种差异主要与应变硬化和残余应力的存在有关。初始显微硬度为206.24±11.96 HV;压缩试验后,硬度增加了23%。
添加剂制造已从快速原型技术发展为一种能够生产具有高度复杂零件的机械性能,而机械性能超过了传统上实现的特性。 div>激光技术对金属粉末的加工允许处理多种合金甚至复合材料。 div>这项研究分析了通过选择性激光融合合并的316L不锈钢的牵引和压缩响应。 div>通过光学MI磨练分析了结果分钟。 div>关于机械性能,对蠕变的抗性,对牵引力的最终抵抗力,裂缝前经济百分比,对理解和微量残留性的抗性。 div>结果表明,微观结构是由堆叠的熔融微底裂组成的,在该微孔中,由于高热梯度和高固化速度,生成了细胞子图。 div>压缩抗性(1511.88±9.22 MPa)优于牵制性(634.80±11.62 MPa)。 div>这种差异主要与变形硬化和残余张力有关。 div>最初的微腐烂率为206.24±11.96 HV,在压缩测试后,硬度增加了23%。 div>
拉伸结构的起源,例如历史,早期社会的巧妙生活安排,例如游牧民族和部落社区使用黑色帐篷,拉伸结构带来了许多好处。过去,它们是体育中心,农业工业建筑和竞技场的封面。随着工业革命的展开,由于其成本效益作为一种实用的屋面解决方案,拉伸结构的大规模生产激增。令人着迷的拉伸结构世界不仅仅是建筑物。这是关于新想法和设计如何共同改变我们通常构建事物的方式。拉伸结构是我们研究的主要重点,不仅有用。它们是一种独特的工程艺术。想象一下很大的空间,上面有一点支撑,做出了一种非常好看,高效的建筑方式。拉伸结构使用柔性材料(如织物或支撑点之间伸展的电缆)从紧密的力中获得强度。在本论文中,我们将仔细研究这些结构,弄清楚它们如何在三个维度上像檐篷或表面一样形成。拉伸结构在许多不同的地方使用,从著名的地标和运动竞技场到临时凉亭和环保建筑。在我们探索这个主题时,目标是了解使拉伸结构起作用的主要思想,表明它们在建筑设计和所涉及的惊人工程方面的灵活性。这一旅程旨在增加有关现代建筑方式的讨论,并强调拉伸结构在塑造当今建筑物的外观以及挑战通常做事的方式方面的重要性。
混凝土是世界上使用最多的建筑材料之一,但是新的和挑战的方法不断地推动信封用于混凝土的应用,并作为建筑材料的可行性。不幸的是,混凝土普遍缺乏对弯曲和拉伸的抵抗力。研究表明,通过实施各种混合物和方法,几项成功的尝试来增强混凝土的机械性能。钢被广泛认为是能够加固混凝土的主要材料。本文评估了混凝土的弯曲张力和压缩强度的变化,这是由于实施铝作为增强剂而变化。为了确定混凝土中铝的全部潜力,同时测试并与钢筋分离。这项研究表明,抗压强度增加了33.7%,并且较少的铝剃须。混凝土束发生故障后弯曲张力的强度增加了153%。实施少量铝数量被证明是有益的。应承认,使用铝量增加的进一步测试会产生负面结果。还通过将铝引入混合物中来影响混凝土的可工程性和合并。具有与铝相似的材料具有增加混凝土压缩和弯曲拉伸强度的潜力。关键词:具体,铝,弯曲张力,压缩,强度
由于暴露于高压气态氢,氢环境脆化 (HEE) 所引起的机械性能下降是液氢推进系统中许多材料面临的关键问题。自 20 世纪 80 年代初以来,美国国家航空航天局 (NASA) 一直在马歇尔太空飞行中心 (MSFC) 进行高压氢环境下的拉伸试验,以建立推进应用候选材料数据库。MSFC 过去常常在高压氢环境中以 0.005 in/in/min 的应变速率进行平滑拉伸试验,以评估材料的 HEE 敏感性。1 根据已发布的 NASA TM 的建议,拉伸试验应变速率近年来改为 0.0005 in/in/min。2 有充分的证据表明,平滑拉伸试验应变速率会影响合金 718、4340 钢、316 不锈钢和许多其他合金的 HEE 敏感性。 1,3–7 因此,以 0.005 英寸/英寸/分钟和 0.0005 英寸/英寸/分钟生成的数据显示,许多合金的 HEE 敏感性存在显著差异。
1.1.2 冲压喷气发动机...................................................................................................................... 8
近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。