Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
原子的精确排列和性质驱动凝结物质中的电子相变。为了探索这种微弱的联系,我们开发了一种在低温温度下工作的真正双轴机械变形装置,与X射线衍射和运输测量值兼容,非常适合分层样品。在这里我们表明,TBTE 3的轻微变形对其电荷密度波(CDW)具有显着影响,并具有从C到A / C参数驱动的方向转变,A = C附近的微小的同存区域,并且没有空间组的变化。CDW过渡温度t c在a = c 1 r的线性依赖性中,而间隙从共存区域中饱和。这种行为在紧密结合的模型中得到很好的解释。我们的结果质疑RTE 3系统中的间隙和T C之间的关系。此方法为研究中共存或竞争的电子订单的研究开辟了新的途径。
本文档是已发表作品的已接受手稿版本,该作品最终以 ACS Applied Nano Materials 的形式发表,版权归美国化学学会所有,由出版商进行同行评审和技术编辑。要访问最终编辑和出版的作品,请参阅 https://doi.org/10.1021/acsanm.0c03373
[ 1] 疾病控制与预防中心。(2020 年 12 月 7 日)。3D 打印工作安全。疾病预防控制中心。[2] Rooney, M. K., Rosenberg, D. M., Braunstein, S., Cunha, A., Damato, A. L., Ehler, E., Pawlicki, T., Robar, J., Tatebe, K., & Golden, D. W. (2020)。放射肿瘤学中的三维打印:文献系统综述。应用临床医学物理学杂志,21(8),15–26 [3] 太空 3D 打印。Aniwaa。(2021 年 8 月 5 日) [4] 原装 Prusa i3 MK3S+ 3D 打印机图片。(n.d.)。Prusa 3D。检索日期:2023 年 8 月 1 日 [5] 艺术家对地球磁层的演绎。(2007)。欧洲航天局。检索日期:2023 年 8 月 1 日 [6] Sherwin Emiliano。(2021 年 6 月 20 日)。[2021] 3D 打印机灯丝多少钱?MonoFilament DIRECT [7] P., M. (2022 年 8 月 8 日)。Pla 与 PETG:您应该选择哪种材料?3Dnatives [8] 文件:polylactid sceletal.svg。Wikimedia Commons。(n.d.-b) [9] 文件:Polyethyleneterephthalate.svg。Wikimedia Commons。(n.d.-a) [10] Junaedi, H., Albahkali, E., Baig, M., Dawood, A., & Almajid, A.(2020)。短碳纤维增强聚丙烯复合材料的延性至脆性转变。聚合物技术进展,2020 年,1-10 [11] https://www.worldoftest.com/electro-mechanical-dual-column-universal-testing-machine-qm-100200300500。(n.d.)。Qualitest。2023 年 8 月 3 日检索 [12] Wady, Paul, et al.“电离辐射对 3D 打印塑料的机械和结构性能的影响。” Additive Manufacturing,vol.31,2020,第 100907 页
膝关节半月板由纤维细胞外基质组成,该基质会承受较大的重复负荷。因此,半月板经常撕裂,而疲劳是其失效的潜在机制。本研究的目的是测量在沿主纤维方向纵向或横向施加周期性拉伸负荷时牛半月板的疲劳寿命。疲劳实验包括周期性负荷,直至发生故障或达到 20,000 次循环,负荷达到预测极限拉伸强度的 60%、70%、80% 或 90%。每组的疲劳数据都与威布尔分布拟合,以生成应力水平与失效循环次数的关系图(S-N 曲线)。结果表明,与沿主纤维方向纵向施加负荷相比,沿主纤维方向横向施加负荷会使失效应变增加两倍,蠕变增加三倍,失效循环次数增加近四倍(不显著)。 S-N 曲线在应力水平和两个载荷方向上的平均失效循环数之间具有很强的负相关性,其中横向 S-N 曲线的斜率比纵向 S-N 曲线低 11%(纵向:S=108 – 5.9ln(N);横向:S=112 – 5.2ln(N))。总之,这些结果表明非纤维基质比胶原纤维更耐疲劳失效。本研究的结果与了解无创伤性径向和水平肌筋膜炎的病因有关
Murat Tiryakioǧlu 博士,CQE,顾问 Alexandra Schönning 博士,委员会成员 Paul Eason 博士,PE,委员会成员 被工程学院录取:工程学院主任 Murat Tiryakioǧlu 博士,CQE 被计算机、工程和建筑学院录取 Mark A. Tumeo 博士,PE 计算机、工程和建筑学院院长 被大学录取:John Kantner 博士 研究生院院长
增材制造已从一种快速成型技术发展成为一种能够生产高度复杂零件的技术,而且这些零件的机械性能优于传统方法。利用激光加工金属粉末,可以加工任何类型的合金,甚至金属基复合材料。本文分析了激光粉末床熔合加工的 316L 不锈钢的拉伸和压缩响应。通过光学显微镜评估了所得的微观结构。关于机械性能,确定了屈服强度、极限拉伸强度、断裂前伸长率、抗压强度和显微硬度。结果表明,微观结构由堆叠的微熔池构成,由于高热梯度和凝固速度,熔池内形成了细胞状亚晶粒。抗压强度(1511.88 ± 9.22 MPa)高于拉伸强度(634.80 ± 11.62 MPa)。这种差异主要与应变硬化和残余应力的存在有关。初始显微硬度为206.24±11.96 HV;压缩试验后,硬度增加了23%。
目的:橡胶广泛用于轮胎、机械零件和需要弹性的用户产品。一些基本特性仍未解决,主要是它们在过度机械性能中发挥作用。需要研究弹性橡胶在高动态压力和高拉伸强度下的性能。这些弹性体旨在增加应力断裂并保持高压拉伸强度。设计/方法/方法:本研究对炭黑聚合物基质对不同橡胶拉伸特性的影响进行了数值研究。使用每百份橡胶 (pphr) 三种不同百分比(80%、90% 和 100%)的炭黑填料部分来测量橡胶的材料特性。结果:本研究发现,随着炭黑填料比例增加 30%,拉伸强度和伸长率会增强。实际意义:本研究在四种超弹性模型中对橡胶进行了实验测试:Ogden 模型、Mooney-Rivlin 模型、Neo Hooke 模型、Arruda-Boyce 模型,使用有限元法 (FEM) 获得模拟材料响应的参数,以供比较。这四种模型已广泛应用于橡胶研究。超弹性模型已用于预测拉伸试验曲线——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差。数值 Ogden 模型结果表明,大应变情况下的相对适应性误差为 1% 至 2.04%。原创性/价值:相比之下,其他模型估计参数的拟合误差从 2.3% 到 49.45%。这四个超弹性模型是拉伸试验模拟,目的是
添加剂制造已从快速原型技术发展为一种能够生产具有高度复杂零件的机械性能,而机械性能超过了传统上实现的特性。 div>激光技术对金属粉末的加工允许处理多种合金甚至复合材料。 div>这项研究分析了通过选择性激光融合合并的316L不锈钢的牵引和压缩响应。 div>通过光学MI磨练分析了结果分钟。 div>关于机械性能,对蠕变的抗性,对牵引力的最终抵抗力,裂缝前经济百分比,对理解和微量残留性的抗性。 div>结果表明,微观结构是由堆叠的熔融微底裂组成的,在该微孔中,由于高热梯度和高固化速度,生成了细胞子图。 div>压缩抗性(1511.88±9.22 MPa)优于牵制性(634.80±11.62 MPa)。 div>这种差异主要与变形硬化和残余张力有关。 div>最初的微腐烂率为206.24±11.96 HV,在压缩测试后,硬度增加了23%。 div>