过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
Terahertz综合电路的发展对于实现第六代(6G)无线通信,高速芯片互连,高分辨率成像,芯片生物传感器和指纹化学检测至关重要。尽管如此,现有的Terahertz片上设备会遭受反射,并在急转弯或缺陷处散射损失。最近发现了光的拓扑阶段,具有非凡的特性,例如对杂质或缺陷的无反射传播和稳健性,这对于Terahertz集成设备至关重要。利用拓扑边缘状态的鲁棒性与低损坏的硅平台相结合,有望为Terahertz设备提供出色的性能,从而在Terahertz集成电路和高速互连的领域提供了突破。从这个角度来看,我们介绍了由光子拓扑设备启用的各种Terahertz功能设备的简要展望,该功能设备将为增强互补金属氧化金属氧化物半导体兼容Terahertz技术的道路铺平道路,这对于加速了6G通信和无效的bior and ubiquility clior and clior clior and clior clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior and clior。
这些行为并非直接源自其组成材料,而是源自其亚波长结构[1,2],以及最近的主动控制[3]。在光学领域,超材料在电磁学和光子学中提供了突破性的应用[4-6],例如以亚波长分辨率聚焦和成像[7]和负折射[8],因此在过去的几十年里引起了人们的极大兴趣。这些亚波长结构能够直接调整光的性质,包括振幅、相位和偏振。由于其支持表面等离子体极化子的能力[9],银和金等贵金属一直是可见光超材料构造块的传统材料选择,而等离子体太赫兹 (THz) 纳米天线通常基于重掺杂的半导体。 [10] 然而,这些超材料通常依赖于其组成块的谐振行为,并且在光频率下存在高电阻损耗,这限制了此类超材料和相关设备的功能在尖锐的频带范围内。更一般地说,基于谐振行为的超材料仅在
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
Yongchen Liu 1 , Wilder Acuna 1 , Huairuo Zhang 2,3 , Dai Q. Ho 1 , Ruiqi Hu 1 , Zhengtianye Wang 1 , Anderson Janotti 1 , Garnett Bryant 4 , Albert V. Davydov 2 , Joshua M. O. Zide 1 , and Stephanie Law 1*
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
摘要CRISPR-CAS9技术最近进行了广泛的研究,并已成为遗传学领域的革命性工具,尤其是在版本和疗法中。这是细菌中发现的一种防御机制,可清洁一块特异性噬菌体,并将其添加到细菌自己的DNA中。通过研究该技术在细菌中的行为和有效性,科学家促进了实验室使用的研究,发现它可以用于一般的遗传编辑,更准确,更便宜。使用CRISPR-CAS9的最大挑战是人类技术的实用性,因为出于自私的目的存在滥用的风险,这可能会在社会中带来巨大的失衡。这项工作的目的是指出基因疗法的积极进步以及一种新的创新技术的积极影响,能够带来巨大的好处,因为它简单地从事大规模的基因组工作,从而促进了预防先天或获得的遗传疾病。对05年前的研究平台上的文章进行了一项书目调查,以英语和葡萄牙语进行。随后得出的结论是,如果使用合法批准,监管和监控,基因疗法总体上为社会带来了巨大的好处,旨在针对人口的福祉和健康。关键字:CRISPR/CAS9;遗传版;基因疗法;生物伦理学。摘要CRISPR-CAS9技术最近进行了广泛的研究,并已成为遗传学领域的革命工具,在版本和疗法方面很特别。这是一种在细菌中发现的防御机制,可将特定的DNA从噬菌体切割,并将其聚集到细菌自己的DNA中。通过研究该技术在细菌中的行为和有效性,科学家进行了研究以用于实验室,并发现它可用于以一般,更准确,更便宜的方式进行基因编辑。使用crispr- cas9的最大挑战在于人类技术的实用性,因为出于自私的目的存在滥用的风险,这可能会在社会中带来巨大的失衡。这项工作的目的是指出基因治疗的积极进步以及一种新的创新技术的积极影响,能够带来巨大的好处,因为它的简单性在大规模的基因组上工作,从而促进了预防先天或获得的遗传疾病。对05年前文章的书目调查是在英语和葡萄牙语的研究平台上进行的。然后得出结论,如果使用合法批准,监管和监测,基因治疗通常会给社会带来巨大的好处,以旨在针对人口的福祉和健康。关键字:CRISPR/CAS9;遗传版;基因疗法;生物伦理学。恢复latécnicacrispr-cas9 ha sido ampliamenteestudiadaúltimamentey se to contractido en una una una herramienta revolucionaria en el campo de la la lalaética,Especialmente en eDiciones y terapias y terapias y terapias。este es un mecanismo de defensa que ecuentra en las细菌y que e eScinde un fragmentoespecíficficeficeficeficeficeficedelbacteriófagoyy lo lo s lo juseganga al de l la propia细菌。在研究该技术在细菌中的行为和有效性时,科学家