我们报告了YBA 2 Cu 3 O 6 + X薄膜的非线性Terahertz第三谐波生成(THG)的测量。与常规超导体不同,THG信号开始出现在正常状态下,这与广泛掺杂水平的伪gap的交叉温度t *一致。降低温度后,THG信号在最佳掺杂样品中显示出低于T C以下的异常。值得注意的是,我们直接观察到THG信号的实时波形中的节拍模式。我们阐述的是,HIGGS模式在T C下方开发的HIGGS模式与已经在T *下面开发的模式伴侣,从而导致能级分裂。但是,这种耦合效应在被压倒性的样品中并不明显。我们探索了观察到的现象的不同潜在解释。我们的研究提供了对超导性和伪群之间相互作用的宝贵见解。
的确,与上述标准有关,未冷却的重测技术是THZ 2D成像的有前途的候选人。它在室温下运行,阵列在硅微电子铸造厂的高级CMOS应用特定集成电路(ASIC)上方生产,紧凑的单层大型2D阵列 - 现在以连续降低价格在工业上生产Mpixel格式。作者组[3]用Leti-Ulis专有的非定形 - 硅螺旋体传感器测试了此成像设置配置[4]。用量子级联激光器(QCL)在3 THz下的测量显示出小于0.5%的光吸收效率。即使这种敏感性足以进行测试过的活动THZ成像设置,这些结果也促使研究了BOLOMETER PISERETURTER的研究,专门调整了对THZ辐射的感觉,以便遵守现实生活中的用户库。
摘要 提出使用具有空间纹理偏振的太赫兹 (THz) 矢量光束来控制量子点中两个相互作用电子的自旋和空间分布。我们从理论上研究了自旋和电荷电流密度的时空演化,并通过计算并发度量化了纠缠行为。结果表明,这两个方面都可以由驱动场的参数在皮秒 (ps) 时间尺度上有效控制。通过分析两种具有不同电子 g 因子的不同材料 GaAs 和 InGaAs,我们研究了 g 因子与产生有效能级间跃迁所需的自旋轨道耦合类型之间的关系。这些结果对于将量子点应用为量子信息技术中的基本纳米级硬件元素以及根据需要快速产生适当的自旋和电荷电流很有用。
摘要:在研究和工程中,短激光脉冲是计量和通信的基础。由于紧凑的设置尺寸,通过被动模式锁定的脉冲产生特别理想,而无需主动调制需要专用的外部电路。但是,完善的模型并不能涵盖比型往返时间更快的增益媒体中的常规自动化。对于量子级联激光器(QCLS),这标志着其操作中的显着限制,因为它们表现出与间隔过渡相关的picsecond增益动力学。我们提出了一个模型,该模型对最近证明的第一个被动模式锁定的QCL的脉冲动力学提供了详细的见解。存在沿空腔的多层石墨烯所实现的不连贯的饱和吸收器的存在,通过表现出与增益介质相似的快速恢复时间,将激光驱动到脉冲状态。这种激光操作的预先未研究的状态揭示了增益培养基对不均匀分布的腔内强度的良好响应。我们表明,在存在强
抽象的分层混合植物(LPK)作为光伏细胞,LED和激光器的稳定性提高,有望作为光伏细胞,LED和激光的3D金属卤化物钙钛矿的替代品或添加剂。然而,这些材料中的高激子结合能意味着激子是许多设备运行条件下的大多数物种。尽管结合LPK的设备的效率一直在增加,但对于这些材料中的激子和自由电荷载体的相互作用仍然未知,这对于理解光电特性如何决定设备的效率是至关重要的信息。在这项工作中,我们采用光泵 / THZ探针光谱(OPTP)和可见的瞬态吸收光谱(TAS)来分析苯基甲基铵铅碘化物(PEA)2 PBI 4的光扣性特性和电荷载体动力学。通过结合这些技术,我们能够从激发子和自由电荷载体中解散贡献。我们观察到在约400 fs的时间尺度上快速冷却自由电荷载体和激子形成,然后在速率常数k 2〜10 9 cm 3 s-1的时间尺度上进行较慢的双分子重组。激子通过两个单分子过程重组,其寿命为t 1〜11 ps和t 2〜83 ps。此外,我们检测出激子的特征 - 瞬态吸收动力学痕迹中的声子耦合。这些发现提供了有关自由电荷接入器和激子之间相互作用的新见解,以及可能进一步了解LPK中的电荷运营商动力学的可能机制。
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
抽象的光学KERR效应,其中输入光强度线性地改变了折射率,它使光学孤子,超充值谱和频率梳子的产生,在芯片设备,纤维通信和量子操作中起着至关重要的作用。尤其是Terahertz Kerr效应,在未来的高速计算,人工智能和基于云的技术中具有引人入胜的前景,由于功率密度和微弱的Kerr响应,遇到了一个巨大的挑战。在这里,我们演示了一个巨大的Terahertz频率KERR非线性,由刺激的声子极性子介导。在巨型Kerr非线性的影响下,功率依赖性的折射率变化将导致微腔的频移,这是通过测量芯片尺度岩石型niobate fabry-pérotmicrobocabity的谐振模式实验证明的。归因于刺激的声子极性子的存在,从频移中提取的非线性系数比可见光和红外光的数量级大,理论上也由非线性黄色方程式证明。这项工作为许多具有Terahertz细纹的基于物理,化学和生物系统的富有和富有成果的Terahertz Kerr效应开放了途径。