战略环境生物学允许几乎无限的可能性。软件提供的数字世界的组成和控制是由物理世界中的生物学实现的。自然生活系统以行星量表以原子精度运行和制造材料,由通过光合作用的〜130吨能量自我捕获。3生物技术使人们能够改变生物学。植物和动物的食物,服务和陪伴的繁殖和繁殖始于数千年前。基因编辑,从重组DNA到CRISPR,用于制造药物和食物,本身就是半个世纪的大龄。合成生物学正在努力使越来越复杂的生物工程系统的组成常规化。4,5生物技术商品和服务已经占美国经济的约5%;食品,燃料,材料和药品是主要产品类别。6,最多可以通过生物技术在本世纪中叶进行生物技术来制作“全球经济的60%”,每年在大多数新的经济活动中产生约30万亿美元。8新兴产品类别包括消费者生物制剂(例如,生物发光的矮菜,9紫色西红柿,10和宿醉益生菌11),军事硬力量(例如,酿造能量学12),真菌学制造(例如,蘑菇'皮革'13),以及用于技术的生物技术(例如,库存的生物技术)(例如,存储数据)。访问未来的产品类别将取决于将生物学作为通用技术解锁15(例如,增长的计算机16),在我们周围,ON和周围部署普遍性和嵌入式生物技术(例如智能血液,17种皮肤疫苗,18和监测粘液19)和生命谱系(例如,出生时的生物安全性,20个物种去灭绝21)。
时间表和完成率是必不可少的。如果最近的趋势继续下去,开发商将需要在未来四年内启动 4 到 7 太瓦 (TW) 的项目,以确保有足够的容量上线来满足 2030 年的目标。与此同时,随着全球对可再生能源的需求预计将增长,全球风能和太阳能供应链的任何收紧都有可能进一步推迟美国的项目。此外,可再生能源的部署取决于到 2030 年将高压输电能力扩大约 60% 并提高其弹性。输电项目历史上需要 6 到 15 年才能完成,许多项目因未能获得其穿过的每个州和社区的许可和支持而被放弃。因此,目前的输电扩建实践也不足以实现 2030 年的目标。在约束最少的 NZA 路径中,到 2050 年将安装超过 3 TW 的风能和太阳能(图 1 A),需要年均建设速度是 2020 年的四倍(图 1 D)。另一条路径的太阳能和风能数量不到 2020 年的一半(图 1 C),但需要更多地依赖二氧化碳 (CO 2 ) 捕获、利用和储存基础设施以及数百座新核电站,而这些核电站目前都没有进行大规模商业部署,并且面临着自身的扩大规模挑战。2. 未能调动转型所需的资金。NZA 发现,在整个净零转型过程中,年度能源支出(占 GDP 的比例)将与今天保持相当,但所需的前期资本投资要大得多。必须调动近 3 万亿美元的资本才能实现
地热能将热量带入低碳能混合物。由于美国希望减少其碳足迹,地热能源的生存能力似乎吸引了国会议员的关注,他们试图根据《国家环境政策法》(NEPA)(NEPA)缓解对地热发展的某些限制。这一最近的两党行动,以及政府的激励措施,技术进步和来自各种能源行业参与者的支持(从雪佛龙到谷歌)为地热行业在美国扩张的增长而产生逆风,对地热能的收益及其在地热能的潜在效果及其在地热工厂中的潜在益处之一,即自然效果的重要好处之一,即高温层,这是近距离绿化的绿化层,这是一定层次的绿化层,这是绿化量的高度循环,这是绿化量的高度循环,这是一家人的自然循环,这是绿化的层次,这是绿化的层次,这是绿化的层次,这是绿化量的综合量,这是一家人的生产量。植物排放。没有燃烧,即燃料的燃烧,与地热发电厂的运行有关,因此与化石燃料发电厂相比,在地热发电期间释放的温室气体排放量(包括二氧化硫和二氧化碳)在地热发电期间释放出明显降低。实际上,一些下一代地热技术基本上释放了零排放。地热功率也是“牢固的”,这意味着它可以提供一致的基本负载功率 - 即,它始终且不需要能量存储即可运行 - 地热设施的平均容量超过90%,而太阳能约为25%,风能为35%。这种灵活性可以与网格上不断增长的间歇性能源配对。地热的潜力很大。此外,普林斯顿大学领导的一项研究于1月[1] [1]发现,在弹性地运营新的地热植物的网格中,也有显着的价值,即使用增强的地热储层作为储能,可以在必要时产生电力。值得注意的是,尽管美国拥有最高的地热发电能力,但它仅占国内电力发电的0.4%或3.7吉瓦[2]。美国能源部估计,下一代地热项目可能可以使用5.5吨的地热能[3],到2050年,它可能占美国能源容量的10%以上。
抽象的新方法和改进的方法可以从热干岩中提取能量,如果成功的话,它们可以从以前未开发的资源中解锁能源生产的Terawatt。三种有希望的方法包括增强的地热系统(EGS),高级地热系统(AGS)和笼中的地球热系统(CGS)。EGS使用粒子支撑的液压刺激裂缝通过低渗透率岩石传达流体以提取热量。ags使用闭环流过一系列深井,以提取热量,而无需液压刺激。CGS使用边界井来包含高压支撑的液压骨折,同时最大程度地减少地震风险。但是,这些方法中的每一种都有其自身的挑战。例如,由于支撑剂降解和快速的热短路而导致的产量较低。ags可能会出现井钻孔和较低的热量提取的极端资本成本。CGS冒着未经证实的笼子概念和极端抽水成本的风险。在这里,我们试图在包括天然裂缝在内的超高不确定性绿色场景中预测每种方法的性能。我们的目标地点是科罗拉多州柯林斯堡附近的Wattenberg地热异常。使用我们的开源地热设计工具(GEODT)仅使用基本输入数据,我们为将来的6公里深井完成了随机功率和经济风险评估。在传导为主的瓦滕贝格异常中,我们预计底部孔温度在220至300°C的范围内。地下应力和断层条件未知。岩石性能除了地下室可能由火成岩或变质岩组成的地下室之外。我们的分析预测,具有五口井(即XGS)的“ X” pattern的CGS拥有99至220美元/MWH的经济热量产量的最大前景,其次是87至2200美元/MWH的3井EGS,然后是410至860至860 $ usd/mwh。