Terra DC快速充电器具有高达180 kW的功率,是为最紧凑,最可靠和未来的需求而设计的。除了一系列功率选择外,Terra Chargers还可以采用CCS和Chademo Connector电缆配置,以单个或双出口格式配置。电缆管理,付款支持和连接性选择还为所有者,运营商和网站主机提供了根据每个充电站点(从公共到车队需求)的需求量身定制的选项。
10 CFR 50.34(a)(3)(i) U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 ATTN: Document Control Desk Subject: Submittal of TerraPower Topical Report, “Principal Design Criteria for the Natrium Advanced Reactor” This letter transmits the TerraPower, LLC (TerraPower) Topical Report, NATD-LIC-RPRT-0002 Revision 0, Principal Design Criteria for the Natrium Advanced反应堆,美国核监管委员会(NRC)进行审查和批准。该报告包含了Terrapower在监管指南1.232修订0的指导下制定主要设计标准的过程的结果,“开发非光电反应堆的主要设计标准的指南”。 Terrapower要求NRC对这些主要设计标准的审查和批准,以供未来的申请人使用。Terrapower还要求对本主题报告中提供的理由进行审查和批准,以满足NATRIUM主管设计标准26。这封信要求考虑一年的名义审查持续时间。封闭的局部报告包含专有信息。要求根据10 CFR 2.390(a)(4)从公共披露中隐瞒包含专有信息的外壳2。宣誓书证明请求扣留外壳2的基础公开披露的基础作为外壳1。专有材料已从外壳2中提供的局部报告中删除,并通过使用[[](a)(4)确定。外壳3包含该报告的非专有公共版本。这封信及其围栏没有做出新的或修订的监管承诺。如果您对此提交提交有任何疑问,请通过rsprengel@terrapower.com或(425)324-2888与Ryan Sprengel联系。
摘要 - 为了主动浏览和遍历各种特征,主动使用视觉感知是必不可少的。我们旨在调查使用稀疏视觉观测值的可行性和性能,以在以人为中心的环境中在一系列常见的地形(步骤,坡道,间隙和楼梯)上实现感知运动。我们制定了适合在感兴趣地形上运动的稀疏视觉输入的选择,并提出了一个学习框架,以整合外部感受和本体感受状态。我们专门设计了状态观察和培训课程,以在各种不同的地形上有效地学习反馈控制政策。我们在各种任务中广泛验证和基准了学到的政策:在地面上行走的全向行走,并在各种障碍物上向前移动,显示出高成功的遍历率。此外,我们通过在新的看不见的地形上增加各种水平的噪声和测试来研究外观感受性消融并评估政策概括。我们证明了自主感知运动的能力,只能使用直接深度测量中的稀疏视觉观测来实现,这些观察值易于从激光雷达或RGB-D传感器中易于获得,在20厘米高度的高高高度上显示出强大的上升和下降,即20 cm的高度,即50%的腿长和强劲的腿部和稳健的噪声和Unigeseen anderseenseles anderseens anderseens anderseen anderseenseles anderseen anderseen sereen seleseen anderains ternales anderains。
情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
本产品仅供参考,可能未针对法律、工程或勘测目的而准备,也不适合用于此类目的。它不代表实地勘测,仅代表地产边界的大致相对位置。
人工智能(AI)是技术的结合,是知识管理的驱动力,也是社会在信息管理等方面面临的巨大挑战。欧盟委员会于2020年2月发布的《人工智能白皮书》也指出,需要提高专业技能,更好地利用数据,学习分析和应用预测模型进行决策。在这种背景下,项目管理是一个已经受到这场革命影响的职业,如果我们利用人工智能系统提供的优势,我们可以优化管理流程,改进对项目产生的信息的分析,并优化项目经理的决策。本文对这些方面进行了前瞻性分析,包括人工智能对知识管理的影响,尤其是对决策的影响。
关于 Terrae Novae Terrae Novae 探索计划的使命是利用机器人作为先驱和侦察兵,引领欧洲人类进入太阳系,并将探索的成果回馈社会。Terrae Novae 的字面意思是“新世界”,涵盖了三个 ESA 探索目的地:低地球轨道 (LEO)、月球和火星。它唤起了新发现、新抱负、新科学、新灵感和新挑战的精神。它象征着不断追求技术、流程和采购创新,从而带来新的和更好的计划实施方式。它还反映了积极接触太空领域以外的新合作伙伴并将太空生态系统扩大到商业领域的愿望。联系方式 explorationstrategy@esa.int © 欧洲航天局
摘要:ZHAW 航空中心开发并实施了一种综合了气象和地形对飞机安全范围影响的新型能源管理系统概念。在研究和教学模拟器 (ReDSim) 中构建了相应的飞行模拟环境,以测试驾驶舱显示系统的首次实施。与一组飞行员进行了一系列飞行员在环飞行模拟。通用航空飞机模型 Piper PA-28 经过修改以用于研究。ReDSim 中的环境模型经过修改,包括一个新的临时子系统,用于模拟大气扰动。为了在 ReDsim 中生成高分辨率风场,在概念研究中使用了一种成熟的大涡模拟模型,即并行大涡模拟 (PALM) 框架,重点研究了瑞士萨梅丹附近的一个小山区。为了更真实地表示特定的气象情况,PALM 由从 MeteoSwiss 的 COSMO-1 再分析中提取的边界条件驱动。从 PALM 输出中提取基本变量(风分量、温度和压力),并在插值后输入子系统,以获得任何时刻和任何飞机位置的值。在这个子系统中,还可以基于广泛使用的 Dryden 湍流模型生成统计大气湍流。本文比较了两种产生大气湍流的方法,即结合数值方法和统计模型,并介绍了飞行测试程序,重点强调了湍流的真实性;然后介绍了实验结果,包括通过收集飞行员对湍流特性和湍流/任务组合的反馈而获得的统计评估。
2022 年 2 月 4 日 TP-LIC-LET-0011 项目编号 99902087 美国核管理委员会 华盛顿特区 20555-0001 收件人:文件控制台 主题:Natrium™ 解耦策略 这封信传送了 TerraPower, LLC (TerraPower) 白皮书,标题为“能源岛解耦策略”。 TerraPower 要求美国核管理委员会 (NRC) 工作人员审查和评估该白皮书,并就工厂设计的解耦方法及其对某些领域的运营灵活性、瞬态分离和监管分离的影响提供反馈。 在 NRC 工作人员对该白皮书进行初步审查后,TerraPower 希望请求与 NRC 工作人员举行后续会议,以确定审查的时间表和范围。 该会议将由 TerraPower 和 NRC 工作人员协调。 本信函和附件不作出任何新的或修订的监管承诺。如果您对本提交文件有任何疑问,请联系 Ryan Sprengel,邮箱:rsprengel@terrapower.com,电话:(425) 324-2888。此致,Ryan Sprengel 许可申请开发经理 TerraPower, LLC