引言月球的诱惑很强 - 人类再次应对挑战。一个有前途的近期场景是将一对流浪者降落在月球上,并参与多年1000公里的历史景点,包括阿波罗11号,测量师5,游侠8,阿波罗17和Lunokhod 2 [6]。在这种情况下,流浪者将以自主或保护的监督控制模式进行操作,并将其周围环境的连续实时视频传输到地球上的操作员。虽然这种任务的硬件方面令人生畏 - 电源,热,通信,机械和电气可靠性等。- 软件控制方面同样具有挑战性。特别是,流动站需要能够在各种地形上行驶并维护其操作的能力。以前的行星机器人(尤其是Lunokhod 2和Viking的手臂)的经验说明了远程操作员的费力和不可预测的时间延迟的漫画。更好的操作模式是监督远程运行,甚至是自动操作,其中流动站本身负责做出许多维持进度和安全所需的决定。我们已经开始了一项计划,以开发和演示技术,以在月球般的环境中启用远程,保护的远程操作和自动驾驶。特别是,我们正在研究立体声的技术
摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
摘要 - 双方机器人由于其拟人化设计,在各种应用中提供了巨大的潜力,但其结构的复杂性阻碍了它们的控制。当前,大多数研究都集中在基于本体感受的方法上,这些方法缺乏克服复杂地形的能力。虽然视觉感知对于在以人为中心的环境中运作至关重要,但其整合使控制进一步复杂化。最近的强化学习(RL)方法已经显示出在增强腿部机器人运动方面的希望,特别是基于本体感受的方法。然而,地形适应性,尤其是对于两足机器人,仍然是一个重大挑战,大多数研究都集中在平坦的情况下。在本文中,我们介绍了专家教师网络RL策略的新型混合物,该策略通过一种简单而有效的方法来增强基于视觉投入的教师策略的绩效。我们的方法将地形选择策略与教师政策结合在一起,与传统模型相比,表现出色。此外,我们还引入了教师和学生网络之间的一致性损失,而不是强制实施相似之处,以提高学生驾驶各种地形的能力。我们在Limx Dynamic P1 Bipedal机器人上实验验证了我们的方法,证明了其跨毛线地形类型的可行性和鲁棒性。索引术语 - Bipedal机器人,增强学习,视觉感知的控制
摘要:在本文中,我们描述了两种相关的制图数据处理和可视化的脚本方法,这些方法提供了具有不同算法复杂性的日本的2D和3D映射。第一个算法利用通用映射工具集(GMT),该算法被称为基于高级控制台的空间数据处理程序。GMT的模块结合了脚本的功能与地球信息学的各个方面,这对于大型地理空间数据集,多格式数据处理以及2D和3D模式中的映射特别有效。第二算法介绍了R编程语言用于制图可视化和空间分析。此r方法利用“ tmap”,“栅格”,“地图”和“ mapdata”的软件包来建模日本群岛的形态计量元素,例如坡度,山坡,山坡和高程。R的通用图形软件包“ GGPLOT2”用于映射日本的县。这两种脚本方法证明了编程语言与使用脚本进行数据处理确定的制图之间建立的对应关系。,由于它们的数据处理高自动化,因此他们的表现优于几种著名和最先进的GIS方法,用于映射。制图在很大程度上反映了数据科学的最新进展,脚本语言的快速发展以及数据处理方法的转移。这扩展到从传统GI到编程语言的转变。作为对这些新挑战的回应,我们在本文中证明了在映射中使用脚本的优点,这些优点包括可重复性和脚本在类似作品中的可观适用性。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
摘要 - 本文提出了一种新型的地形自适应局部轨迹规划师,旨在在可变形地形上自动操作。最先进的解决方案要么不考虑可变形的地形,要么不提供足够的鲁棒性或计算速度。为了弥合此搜索差距,本文引入了一种新型的模型预测控制(MPC)公式。与仅依赖于避免障碍物的硬性或软限制的普遍的最新方法相反,目前的配方通过纳入两种类型的约束来增强鲁棒性。通过广泛的仿真来评估配方的有效性和鲁棒性,涵盖了广泛的随机场景,并与最新方法进行了比较。随后,通过文献中以最佳控制的地形力学模型来增强该配方,并明确解决了地形变形。此外,采用无知的卡尔曼过滤器的地形估计器可用于在线动态调整下沉指数,从而产生地形自适应配方。在现实世界中,该公式在现实世界的实验中进行了测试,以刚性验证的配方作为基准测试。结果展示了拟议的配方所实现的优越的安全性和绩效,强调了将Terramogenics知识整合到计划过程中的重要意义。具体而言,所提出的地形自适应配方可实现平均绝对侧滑角,平均绝对偏航率降低,目标时间较短以及更高的成功率,这主要归因于其对计划者内部机械学的增强的理解。
•随机月球地形产生,具有大的(陨石坑,山丘)和小(迷你陨石坑,岩石)伪影。•其他地形样品是手工制作或缩放的NASA高分辨率地形。•许多可自定义的参数设置火山口,地形大小和特征。•培训数据收集的大面积,可为更广泛的唯一数据范围提供。
摘要:人形机器人是机器人技术的关键重点,其导航艰难地形对于许多用途至关重要。虽然取得了进步,但为复杂环境创建适应性的运动仍然很困难。基于学习的系统的进展为强大的腿部运动提供了希望,但挑战持续存在,例如在高速和不平衡的地面跟踪准确性,以及实际机器人的关节振荡。本文提出了一个新颖的培训框架,以通过强化学习采用两阶段的训练范式来应对这些挑战。通过整合命令课程学习,完善我们方法的预知和适应性,进一步构成了所提出的框架。此外,我们将Dreamwaq适应了我们的人形运动系统,并将其改进以减轻关节振荡。,我们实现了我们方法的SIM到真实传输。一系列经验结果表明,与最先进的方法相比,我们提出的方法的出色表现。
由于地形和大气过程之间的复杂相互作用引起的摘要,气候建模在具有复杂地形(例如南亚)的地区可能具有挑战性。这项研究研究了南亚日常风速的高分辨率气候模拟的附加值差异,重点是创新的地形风速(W t)调整方法。通过应用分布增加值(DAV)和上尾PDF(95%)分析,我们会系统地评估区域气候模型(RCMS)和全球气候模型(GCMS)的性能。使用W t方法前后的DAV结果的比较揭示了调整对区域气候模型性能的影响。在几种模型中,例如IPSL-RCA,Noresm1-RCA和Canesm2-RCA,掺入W t导致了实质性改进,如正dav值所示。在上尾PDF分析中,改进更加一致,表明调整通常增强了极端风事件的表示。但是,某些模型(例如NoreSm1-RCA和Canesm2-RCA)通过描述正面DAV值在调整W t之前和之后始终如一。总体而言,结果表明W t有效地改善了大多数气候模型的风速表示。根据DAV分析,高分辨率模型在低分辨率模型中平均具有15%的正添加值。这项研究的贡献正在弥合南亚观察到的风速模式与气候模型输出之间的差距。由于这项研究,揭示了评估和调整模型的量身定制方法,强调了模型行为的复杂性。在次大陆的研究领域中,这项研究的结果为与气候相关的决策,风险评估和基础设施发展提供了关键见解。
摘要:此摘要总结了针对外星探索的地形检测机器人的设计,开发和功能的详细探索。该机器人的主要目的是通过使它们能够在不损坏的情况下驾驶各种地形来提高空间探针的安全性和效率。该文档详细介绍了机器人的设计,并结合了通过应用力和反馈机制进行自适应运动的创新功能,例如地面硬度检测。已参考了重大研究强调机器人适应从沼泽到沙漠的各种地面类型的能力,由于其复杂的表面,这通常会对移动性构成重大风险。例如,诸如概率神经网络和支持向量机之类的技术用于表面分类,该技术基于使用诸如局部二进制模式和加快稳健特征的方法提取的纹理特征。机器人的结构包括具有铝合金组件的稳健机械结构和适用于各种天体的不同引力拉力的高振动电动机。机器人的关键特征是它可以重新定位本身的能力,而不是在遇到不可能的地形时反转,这是由独特的车轮设计和复杂的控制系统促进的。本文档还讨论了为空间探索设计机器人系统的实践挑战和理论含义,包括对模拟外星表面的耐用性测试以及高级传感器和AI的集成以改善导航决策。文档的结论中概述的业务模型提出了一种将该技术商业化用于太空探索应用的战略方法。