• 侦察地形稳定性图从广阔的角度识别不稳定或潜在不稳定的土地区域。它们有助于识别需要更集中分析的区域,例如详细的地形和地形稳定性测绘以及地形稳定性现场评估。• 详细地形图提供有关地表空间和物理属性、其地质材料和过程的信息。它们提供有关地形稳定性条件和土壤侵蚀潜力的详细解释数据。• 详细地形稳定性图提供更全面的地形稳定性危害评估。它们有助于更狭义地定义需要进行地形稳定性现场评估的区域。• 地形稳定性现场评估侧重于拟议的采伐区或道路位置的特定关注区域。
第四章:雪崩的统计偏差建模.....................................................................................................................91 4.1 简介..............................................................................................................................91 4.2 数据来源回顾..............................................................................................................93 4.3 alpha-beta 偏差模型................................................................................................96 4.4 数据集描述.........................................................................................................................98 4.4.1 异常值的识别.........................................................................................................98 4.4.2 残差的正态分布检验....................................................................................100 4.4.3 用于回归分析的数据集的描述性统计.............................................................101 4.4.4 回归模型变量之间的相关性....................................................................104 4.5 方法.............................................................................................................................107 4.5.1 雪崩剖面和确定最佳拟合模型.....................................................................108 4.5.2 Alpha-beta滑行模型结果................................................................................................110 4.6 验证...................................................................................................................115 4.7 将三个预测因子(公式 4.6)应用于高速公路雪崩路径的示例......................................................................................................116 4.8 在偏远地区仅应用 beta 值的示例(公式 4.7).............................................................119 4.9 讨论......................................................................................................................119 4.9.1 潜在的错误来源....................................................................................................123
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
本文旨在讨论与将地形稳定性测绘 (TSM) 用于生物地形测绘 (BTM) 目的有关的一些问题。旨在指导那些负责确定地形测绘合同规范和/或项目目标的人员,以及协助负责撰写项目提案的合格注册专业人员 (QRP)。建议在任何地形测绘项目开始时咨询 QRP,以确保所需的测绘适合项目目标。生物地形测绘是用作陆地生态系统测绘 (TEM) 基础地图的地形测绘。地形稳定性测绘是用于制作坡度稳定性图的地形测绘。这两种类型的地形测绘不同,因为每种预期的最终产品都需要一组特定的测绘标准和测绘标准。这导致符号(编码)、线条和数字数据的差异。使用现有的地形稳定性测绘来绘制生物地形并不理想。重新绘制某个区域的地图可能更具成本效益,耗时更少,在某些情况下还能生成更高质量的地图产品。以下是将 TSM 与 BTM 相结合的不同方法的示例:
1. 事实信息.................... ... 1 1.2 人员伤害....................................................................................................................................................................................................................................................................................................................................................................................................9 1.3 飞机损坏....................................................................................................................................................................................................................................................................................................................................................................................................................9 1.4 其他损害。 ................. ... ................. ... ................. ... . ...
美国联邦航空管理局 (FAA)。联邦航空法规 (FAR)。91.3“机长的责任和权限”,91.119“最低安全高度:一般规定”,91.121“高度计设置”,91.123“遵守空中交通管制的许可和指示”,91.155“基本目视飞行规则最低天气要求”,91.157“特殊目视飞行规则最低天气要求”,91.175“在仪表飞行规则下起飞和降落”,91.185“仪表飞行规则操作:双向无线电通信故障”,97“标准仪表进近程序,子部分 C – TERPS 程序”,121.97“机场:所需数据”,121.117“机场:所需数据”,121.135“内容”,121.315“驾驶舱检查程序”,121.443“机长资格:航线和机场”, 121.445“机长机场资格:特殊区域和机场”,121.542“飞行机组人员职责”。2000 年 1 月 1 日。
摘要.............................................................................................................................................3
地形建模,即地面量化的实践,是地球科学、数学、工程学和计算机科学的综合体。这门学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地面形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版