16. 摘要 由于效率和亮度的提高,发光二极管 (LED) 现在是户外照明项目的首选。与产生更长波长和黄色至橙色光的高压钠灯和产生近单色黄光的低压钠灯不同,LED 通常是全光谱白光。由于颜色和强度的差异以及闪烁和非朗伯发射等特殊特性,LED 对野生动物的影响与过去的照明模型不同。目前尚无关于 LED 对野生动物影响的重要有组织的信息。该研究综合了 LED 对野生动物的已知或可能影响,为机构提供了一套通用信息,以准确评估环境影响和缓解方法。在不同的数据库中使用特定的搜索词,使用特定的筛选标准收集相关研究。从最终符合条件的来源中提取离散研究。几乎所有研究的生物都是脊索动物或节肢动物。最常见的脊索动物研究是研究发育,其次是研究运动,其中有大量研究与畜牧业有关。大多数节肢动物研究是研究运动,其次是研究发育,其中有大量研究与蚊子有关。光污染研究可用于评估 LED 的影响,但 LED 的特定闪烁和非朗伯发射特性除外。当前的研究支持通过降低强度、控制溢出、减少持续时间和控制光谱来减轻 LED 的影响,以避免大多数群体对较短波长的峰值敏感性。感光器敏感性的显著变化和 LED 光谱输出的灵活性主张考虑特定受影响物种,以努力减轻 LED 的不利影响。
摘要 — 正在进行的数字化转型引发了各种新网络应用的出现,这些应用需要尖端技术来提高其效率和功能。该方向的一项有前途的技术是数字孪生,这是一种设计和管理具有高度自动化、智能化和弹性的复杂信息物理系统的新方法。本文讨论了使用数字孪生技术作为非地面网络 (NTN) 建模的新方法。数字孪生技术可以创建实时运行的精确数据驱动的 NTN 模型,允许快速测试和部署新的 NTN 技术和服务,同时促进创新和降低成本。具体而言,我们提供了将数字孪生集成到 NTN 中的愿景,并探讨了主要的部署挑战以及 NTN 领域内的关键潜在支持技术。最后,我们提出了一个案例研究,该研究采用数据驱动的数字孪生模型在开放式无线接入网络 (O-RAN) NTN 架构中进行动态和面向服务的网络切片。索引词——人工智能、数字孪生、非地面网络(NTN)、卫星通信。
目标1:设计一个用于集成T/NT网络的3D多层通信架构2:评估自由空间,光学和射频链接链接的链接预算目标3:设计高级传输技术目标4:构思创新的方法论,用于沟通和计算资源的目标5:评估Conce of Conce of Conce的方法
摘要 - 在本文中,我们介绍了我们的项目6G的愿景,即连接的Sky(6G-SKY),以整合地面网络(TNS)和非事务网络(NTN),并概述了与我们的项目相比的6G研究项目中当前的研究活动。从行业和学术界的角度来看,我们确定了关键用例段,将空中用户和地面用户与我们的6G-Sky多层网络体系结构连接起来。我们解释了我们的整体6G-SKY体系结构的功能视图,该体系结构涉及空中和太空平台的异质性。架构元素和通信链接是确定的。我们通过考虑多层3维网络提出的一组固有挑战来讨论6G-SKY网络设计和管理功能,我们称它们为合并的空域和NTN(合并的ASN)。最后,我们研究了6G-SKY项目目标的其他研究挑战。索引术语 - 地线网络,非事物网络,3D网络体系结构,用例段,3D网络设计。
各种微生物居住在农田和森林等陆地环境中。特别是,诸如霉菌和蘑菇之类的真菌已演变为分解陆地植物的微生物,其中许多人专门作为植物 - 寄生虫或共生体。据说人类的传染病改变了人类的历史,但是传染病的农作物疾病也对我们的历史和文化产生了巨大影响。另一方面,具有植物的共生真菌有助于宿主在环境中的适应性。因此,对这些真菌的控制对于提高和稳定农业和林业生产力至关重要。
摘要:陆地生态系统在土壤抵抗组的形成和抗生素耐药细菌的传播中起着至关重要的作用。对各种陆地生态系统中的土壤微生物群落,其结构,完整性和抗生素耐药性(AR)水平进行了全面研究。总共从研究的生态系统中分离出389个主要细菌菌株,其中57个对抗生素具有抗性,抗生素耐药性水平超过70%。原始森林的土壤微生物组的特征是抗生素抗性的细菌含量较低。只有两个物种,蜡状芽孢杆菌和pantoea凝集群显示出对抗生素的高耐药性。在药用植物的农业生态系统的土壤中,在106种细菌菌株中,在13种中发现了对抗生素的高度耐药性。已经确定,抗生素抗性细菌的数量在被Enro floxacin污染的农业生态系统的土壤中最高。在190个测试的细菌菌株中,有42个(22%)的特征是高水平的抗生素耐药性。因此,土壤生态系统是抗生素耐药菌形成和扩散的关键联系,这对人类是一种潜在的危险。为了降低人类AR的风险,必须采取适当的措施来管理土壤微生物组并避免用抗生素污染土壤的污染。
图 1。SiO X 作为辐射屏障。NIP 设备中的质子散乱(a)没有,(b)有 1 μm 厚的 SiO X 质子屏障。红线表示由于质子相互作用而在设备堆栈中形成的总空位与深度的关系。每个案例都给出了设备示意图,设备架构的详细信息请参阅方法部分。代表性 NIP 设备的横截面 SEM 图像,不带(c)和带(d)SiO X 层。(e)NIP 和(g)PIN 设备在用 0.05 MeV 质子辐照之前和之后的平均 PCE,质子辐照的通量分别为 10 13 cm -2 和 10 15 cm -2 ,没有(裸露的)和有(受保护的)SiO X 质子屏障。每个类别对 4-5 个设备进行平均值计算。相应的 JV 曲线显示在(f)和(h)中。
摘要 全球清洁能源服务的提供是 21 世纪面临的一项关键挑战。为了提供此类服务,大型太阳能发电场的数量和规模显然将继续增长。原则上,超轻膜轨道太阳能反射器可以在一天中的关键黎明/黄昏时段照亮大型太阳能发电场,从而提高地面太阳能的利用率。关键优势在于,只需要将相对较小的质量运送到地球轨道。本文将讨论与此类太空能源服务的开发、部署和运营相关的技术挑战。本文将讨论业务发展模式以及监管问题,最后将提出综合技术示范路线图。
摘要:几十年来,寻找火星生活的潜在迹象引起了强烈的国际兴趣,并导致了重大的计划和科学实施。显然,为了检测地球以外的潜在生命信号,基本问题,例如如何定义诸如“生命”和“生物签名”之类的术语。由于直接探索火星的高昂成本,地球上的火星样地区对于天体生物学研究是无价的目标,科学家可以在这里练习寻找“生物签名”并完善检测它们的方法。本评论总结了这项工作导致的科学仪器技术。仪器必须是我们的“眼睛”和“手”,因为我们试图识别和量化火星上的生物签名。可以应用于天体生物学的科学设备包括质谱仪和电磁基谱的光谱仪,氧化还原电势指标,圆形二色极仪,原位核酸序列,生命隔离/培养系统和成像器。这些设备以及如何解释它们收集的数据已在地球上的火星 - 分析极端环境中进行了测试,以验证它们在火星上的实用性。通过火星的完整进化历史预测生物签名的挑战,陆地火星类似物根据与不同火星地质时期的相似之处分为四个主要类别(早期的诺阿赫时期,早期的helsperian -hesperian -hesperian -hesperian -hesperian -hesperian -hesperian -earkon -earlian -earkon eright and opmand and opmaind opmair -earkon,noachian noachian noachian晚期,又是中间的公出了公之时,公之时又是中间的公出了公之时,并被公之时公出了。未来的任务建议将更加集中于火星的南半球,一旦航天器工程的进步解决了降落问题,因为对这些早期地形的探索将允许调查涵盖Mars通过其地质历史的更广泛的延续性。最后,本文根据地球上的火星类似物的四类类似物回顾了上面列出的一系列科学仪器范围的实际应用。我们回顾了适用于这些火星类似物中适用于自动机器人漫游者测试的工具的选择。从工程效率的考虑来看,火星流浪者应该配备尽可能少的仪器组件。因此,一旦定义了火星上的候选降落区,应根据每个火星登陆区域的已知地质,地球化学,地球化学,地球化学,地球化学和年代学特征来精心设计便携式工具套件。当然,如果火星样本返回任务成功,那么此类样品将允许在地球上实验室进行实验,这些实验比在火星上实现的可能性要全面更全面且价格合理。必须在寻找外星人生活中的假阳性和假阴性结论中,必须将多种多样和互补的分析技术组合,复制和仔细解释。是否可以在火星上检测到生命的签名的问题是最重要的。回答这个问题非常具有挑战性,但似乎已经变得易于管理。
近期太空项目的兴起 [1] 重新点燃了人们对卫星通信的兴趣。这在物联网 (IoT) 社区中尤为明显,该社区不断寻求多样化应用场景 [2],同时提供全球任何地方的网络覆盖。卫星在新的太空环境中独有的特性(廉价发射和快速采购廉价纳米卫星,又称立方体卫星)为物联网网络提供了架构替代方案,具有前所未有的规模和灵活性 [3]。部署在地球同步轨道 (GEO) 上的卫星的自转周期与地球相同(在地面观察者看来是静止的),可以为 35,786 公里高度的特定区域提供持续的网络连接(图 1 和表 I)。另一方面,低地球轨道 (LEO) 卫星以大约 7 公里/秒的速度在较低高度(160 公里至 1,000 公里之间)移动,并且可以在可预测的时间间隔提供间歇性和定期网络连接。当部署在星座中时,LEO 卫星可以增加重访频率,但至少需要 60 颗卫星才能确保持续覆盖。通过在这些卫星上搭载物联网设备,出现了新的连接机会。通信技术的进步使得今天可以使用与地面物联网网络相同的技术在物联网设备和卫星之间直接通信 [4],这直到最近几年才闻所未闻。此类技术最显著的进步包括 LoRa/LoRaWAN [5] 和 NB-IoT [6],它们提供长距离通信能力并降低设备能耗(18 mA @7dBm)。