电动力学(ED)系绳是从航天器延长的冗长电线。它具有强大的潜力,可以在低地球轨道上提供推进剂较少推进。该系链使用与玩具,电器和计算机磁盘驱动器中的电动机相同的原理。它是推进器,因为磁场会在电流携带的电线上施加力。地球提供磁场。可以通过正确控制该“电动力”线产生的力,以使用拉或推动航天器作为制动器或助推器。NASA计划通过系绳从地球大气中脱离能量,作为家庭首次演示无推进剂太空推进系统的首次演示,可能导致革命性的太空运输系统。与地球磁场合作将使包括国际空间站在内的众多航天器受益。系绳推进不需要燃料。完全可以重复使用,并且在环境上清洁,并以低成本提供所有这些功能。
*Swan, P., Raitt, Swan, Penny, Knapman.,《太空电梯:技术可行性和发展方向评估》,国际宇航科学院研究报告,弗吉尼亚版出版公司,Science Deck(2013 年)ISBN-13:978-2917761311
太空垃圾已成为太空开发领域的一大问题。具体而言,一种主动清除碎片的方法涉及使用电动系绳系统,该系统利用地磁通量和等离子体电子之间的相互作用。在各种系绳中,带状系绳在碎片清除任务中表现出优异的生存能力。然而,碎片碰撞造成的损伤孔边缘可能会产生应力集中,导致裂纹扩展和系绳断裂。在此,我们提出了一种铝玻璃布带 (ALGC) 系绳,其中应力分布均匀。为了模拟太空垃圾与系绳的碰撞,在 ISAS/JAXA 使用两级轻气枪进行了超高速撞击实验。首先,测量并比较两种类型的系绳(ALGC 系绳和标准铝带系绳)的圆形或椭圆形损伤孔的长度。接下来,根据拉力定义它们的断裂特性。此外,还对铝带系绳进行了碰撞模拟,以便详细了解碎片碰撞。经证实,即使两条系绳的损伤尺寸几乎相等,ALGC 系绳在承受拉力方面也优于铝带系绳。这些多功能 ALGC 系绳克服了铝带系绳的缺点,因此在清除任务期间应具有较高的抗碎片碰撞能力。
与Globalpush一起商业化空间,人类正在将其发射到轨道上,而自然捕获速度比Naturalefects删除了它们。轨道碎片特别危险,因为它由于轨道对象之间的裂解而能够成倍增长。为了确保长期可访问性,必须积极去除高风险的物体以限制轨道碎片人群的生长。一种有源碎屑去除的方法是用束缚网捕获并将物体拖出轨道的。这项工作介绍了拟议的新型系绳配置部署动力学的验证。的束缚元素:通过质量弹簧连接的总体质量节点系统和绝对的网络涂层和一个绝对的坐标涂层模型。实验确定了系绳的部署运动的IRACCRICHAICY,并使用新型Tether设计进行了完整的捕获场景。
多细胞动物的摘要需要polycomb组蛋白的表观遗传抑制。后者在多种亚基X es中组装,其中两种,poly comb r ePressiv e comple x 1(pr c1)和poly comb r e:re atressiv e comple x 2(prc2),起作用,以抑制k e y de v e v elopmental基因。ho w pr c1和pr c2识别特定基因仍然是一个悬而未决的问题。在这里,我们报告了数百个DNA元素的鉴定,这些DNA元素将规范PRC1绑定到人类发育基因。我们使用该术语系列来描述在某些基因组部位在某些基因组部位显着存在的过程,尽管该复合物不太可能直接与DNA相互作用。详细的分析表明,与PRC1束缚相关的序列特征与F a v我们的PR C2结合的序列特征不同。t hrought the Genome,两种序列的特征是不同比例混合的,以产生一系列的DNA元素,这些元素的范围从主要是prc1或prc2到能够束缚这两种复合物的元素。新兴图片类似于果蝇的多梳子响应元件(PRES)对polycomb络合物的范式靶向,但可塑性是较高的。
图 1:EDT-DD 参考系草图。左上角的插图显示了 EDT-DD,为了使图更清晰,FB 的原点未置于质心。左下角的插图显示了轨道平面。
摘要 将 mRNA-LNP 有效递送至特定细胞类型仍然是 mRNA 疗法广泛应用过程中面临的主要挑战。传统的靶向方法包括修改脂质组成或对脂质纳米颗粒 (LNP) 的表面进行功能化,这会使制造变得复杂,改变纳米颗粒的大小、电荷和隐身性,影响其递送和免疫原性。在这里,我们提出了一种通用的靶向 mRNA-LNP 递送方法,该方法使用双特异性抗体 (BsAbs) 在 LNP 和细胞表面标志物之间建立桥梁。不是将靶向剂附着到纳米载体上,而是先施用 BsAbs,与靶细胞上的表面蛋白结合,然后将未修饰的 LNP 保留在受影响的组织中。我们证明了在体外和体内将 mRNA-LNP 有效且细胞类型特异性地递送至表皮生长因子受体 (EGFR) 和叶酸水解酶 1 (PSMA) 阳性细胞。该技术的灵活性是通过替换 BsAbs 的细胞靶向区域实现的,从而使得下一代靶向 mRNA 药物能够快速开发。
•“用于构建空间电梯的合适材料,似乎在手头附近有三种材料可供选择,自发现以来,每种材料都在迅速发展。必须增加这些材料的样本量,以便可以进行详细的机械,电和热测试。鉴于现在已知的,石墨烯超层压板似乎是最好的选择,硝化氢硼可以替代。” [2]•“为太空电梯的绳索质量材料制造仍然需要更多的开发,但是高质量工业产品的轨迹很明显。认为,随着该石墨烯过程的持续发展,使用石墨烯作为其材料,太空电梯的生产可能会在五到10年内开始。” [1]•“工业规模的制造方法可能会在制造空间电梯束缚所需的尺度和速度下产生多晶而不是完美的单晶石墨烯。这项工作表明,只要材料具有缝线良好且几乎没有缺陷的晶粒边界,当前的制造方法可以使石墨烯具有足够强大的石墨烯,以使太空电梯束缚。” [3]未来
系带自动连接的车辆解决方案-Tata Elxsi -Tether Auto -Connected车辆平台|汽车