图 1 治疗转甲状腺素蛋白淀粉样变性 (ATTR) 的药物会干扰转甲状腺素蛋白 (TTR) 淀粉样蛋白级联的不同阶段。 (1) Inotersen 直接附着于 TTR mRNA,诱导后者被内切酶 RNase-H 1 切割,从而阻止翻译,并因此减少 TTR 的产生。 (2) 与 RNA 诱导的沉默复合体 (RISC) 结合后,patisiran 会失去其无活性的正义链。具有药理活性的反义链附着于 TTR mRNA 并诱导内切酶 Ago2 切割,从而阻止翻译并减少 TTR 的产生。 (3) TTR 四聚体稳定剂 tafamidis 和二氟尼柳与四聚体 TTR 上的甲状腺素结合位点结合,并通过天然状态的动力学稳定作用抑制其解离为淀粉样变性单体。 ( 4 ) 表没食子儿茶素没食子酸酯 (EGCG) 通过与独特的 EGCG 结合位点结合而产生类似的效果。 ( 5 ) 抗血清淀粉样蛋白 P 成分 (SAP) 和 TTR(与错误折叠的、前纤维状 TTR 和纤维状 TTR 沉积物结合)的单克隆抗体附着在其特定靶标上,并诱导巨噬细胞对后者进行吞噬清除。 ( 6 ) EGCG 以及强力霉素和牛磺熊去氧胆酸 (TUDCA) 的组合通过未知机制破坏纤维状 TTR 沉积物。
抽象背景CD8 + T细胞是具有不同表型功能的高度多样化的细胞群,可以影响免疫疗法的结果。进一步见解自然引起的肿瘤特异性T细胞的CD8 +特异性和TCR亲和力的作用,其中同一肿瘤中同一肽型组成性复合物(PMHC)在同一肿瘤中识别相同的肽型组合组织兼容性的T细胞都至关重要。方法CT26模型在皮下肿瘤植入后第3、6和9天用抗PD-1处理,在早期肿瘤发育期间产生可变反应。四聚体染色,以确定针对肿瘤特异性表位GSW11的CD8 + T细胞的频率和亲和力,并通过四聚体竞争测定法进行了证实。使用流式细胞术和大量RNA-SEQ进行高自发和低自发GSW11特异性CD8 + T细胞的功能表征。进行体外细胞毒性测定和体内过继转移实验,以确定高潮种群的细胞毒性。抗PD-1的结果治疗成功与低自发(TET LO)GSW11-特异性CD8 + T细胞的优先扩展与VβTCR表达clonotypes有关。高自发性T细胞(TET HI)(如果存在)仅在PD-1难治性肿瘤中发现。tet lo表现出了以TCF-1和T-bet较高表达为标志的前体T型或祖细胞T细胞表型,而耗尽标记CD39,PD-1和EOMES的表达较低,而TET HI细胞则耗尽了TET HI。转录组学分析显示,与TET HI相比,在回归和进展的肿瘤中发现的TET LO中发现了与TCR信号,细胞毒性和氧化磷酸化相关的途径,而与DNA损伤,凋亡,凋亡和自噬相关的基因被下调。体外研究表明,TET LO表现出比TET HI更高的细胞毒性。TET LO的产物转移比TET HI表现出更有效的肿瘤控制,并且当将TET LO与两剂抗PD-1结合使用时,可以实现治疗反应。靶向较低的对PMHC亲和力新皮上的较低亲和力的T细胞反应的结论显示了改善PD-1免疫疗法的潜力。未来的干预措施可能会考虑通过疫苗接种或收养转移来扩大低潮人群。
摘要经硫代蛋白(TTR)是一种在血液和脑脊液中发现的本质四聚甲状腺素转运蛋白,其错误折叠和聚集会导致经胆囊素淀粉样变性。将小分子tafamidis(Vyndaqel/vyndamax)鉴定为天然TTR倍数的有效稳定剂,并且这种聚合抑制剂是用于治疗TTR淀粉样蛋白病的治疗的监管机构批准的。尽管对TTR进行了50年的结构研究以及基于结构的药物设计的胜利,但仍有明显的结构信息可用于了解配体结合变构和淀粉样蛋白生成的TTR展开中间体。,我们使用单粒子冷冻电子显微镜(冷冻EM)研究了一个55千达尔顿四聚体的构象形态,在一个或两个配体的情况下,揭示了四腔体系结构中固有的不对称性,并且先前未观察到的构象状态。这些发现提供了对负合作配体结合和负责TTR淀粉样生成的结构途径的关键机理见解。这项研究强调了冷冻EM提供对蛋白质结构的新见解的能力,这些蛋白质结构在历史上被认为太小而无法可视化,无法识别由晶体晶格的构造所抑制的药理靶标,从而在基于结构的药物设计中开放了未知领域。
摘要:未培养噬菌体对环境的影响取决于其首选的生命周期(溶菌性或溶源性)。然而,我们预测它的能力非常有限。我们旨在通过比较溶菌性和溶源性噬菌体的基因组特征与其宿主的相似性来区分溶菌性和溶源性噬菌体,反映它们的共同进化。我们测试了两种方法:(1)四聚体相对频率的相似性,(2)基于精确的 k = 14 寡核苷酸匹配的无比对比较。首先,我们探索了 5126 种参考细菌宿主菌株和 284 种相关噬菌体,并找到了使用两种基于寡核苷酸的方法区分溶源性和溶菌性噬菌体的近似阈值。对 6482 个质粒的分析揭示了不同宿主属之间以及在某些情况下远距离细菌类群之间水平基因转移的可能性。随后,我们通过实验分析了 138 株肺炎克雷伯菌及其 41 种噬菌体的组合,发现实验室中与这些菌株相互作用次数最多的噬菌体与肺炎克雷伯菌的基因组距离最短。然后,我们将我们的方法应用于来自温泉生物膜的 24 个单细胞,其中包含 41 个未培养的噬菌体-宿主对,结果与在此环境中检测到的噬菌体的溶源生命周期相一致。总之,基于寡核苷酸的基因组分析方法可用于预测 (1) 环境噬菌体的生命周期、(2) 培养物保藏中宿主范围最广的噬菌体,以及 (3) 质粒的潜在水平基因转移。
揭示了稀有地掺杂的Yttrium Iron石榴石的宽带Terahertz Faraday旋转机制Q.D.Xie,Z.C。 bin,T.Y。 Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Xie,Z.C。bin,T.Y。Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhang,M。Hu,Q.H.Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Yang和P.H.Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M.Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,J.N。Patricio,D.C。Palangyos,R.A。 Guerrero和S.D.ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。Syahrial,T.A。Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono和Q.Y.yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H.Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Shen,M.Y。an,q.q。Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhukava和F.F.komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M.Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,D.C。Palangyos,J.N。Patricio,S.D。Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono,Q.Y.Yan和A.Z. Syahrial 101Yan和A.Z.Syahrial 101
心脏淀粉样变性(CA)可以通过将不溶性淀粉样蛋白原纤维沉积在心肌细胞外空间中,从而导致进行性心力衰竭(HF),从而导致渗透性和限制性心肌病。尽管CA先前被认为是罕见且无法治愈的,但诊断和新兴疗法的最新进展一直在改变这种前景。至关重要的是传播有关CA的认识,以促进早期诊断和适当的治疗干预措施,增强患者的预后和生存。目前,估计从症状发作到诊断的延迟延迟了2年,通常涉及与5名不同的专业人员进行咨询。心血管成像的进步已促进了早期,更准确的诊断,从而减少了侵入性手术的必要性,例如心内膜活检。目前,Tafamidis是唯一已证明可以在Attr-CA中提供预后益处的药物。tafamidis是一种针对循环TTR蛋白的高度特异性药物,稳定TTR四聚体,以防止其解离为沉积在心肌中的淀粉样蛋白生成单体。与特定的淀粉样变性疗法一起,可能需要支持性HF治疗;但是,由于潜在的不耐受性,使用通常用于少量射血分数(HFREF)的HF的药物来管理CA可能具有挑战性。指导指导的医疗疗法(GDMT)的有效性仍然不确定,并且仍然需要通过随机对照临床试验(RCCT)进行评估。因此,治疗基石
乳头状甲状腺癌(PTC)的特征是T细胞及过滤,并且经常以抗硫代表球蛋白抗体(TGAB)的存在。在这种情况下,细胞免疫和TBAB的作用是争论的问题。我们研究的目的是将TGAB,肿瘤表位特异性T细胞的存在与PTC患者的临床结果相关联。我们研究了n = 183例诊断为PTC的患者,这些患者接受了总甲状腺切除术和131 I消融治疗。在平均97个月的随访期间,大多数PTC患者没有肿瘤复发的迹象(n = 157例)。相反,一名患者的血清TG水平高于检测极限,<1 ng/mL,两个患者TG血清水平≥1ng/ml和<2 ng/ml,n = 23例患者的Tg血清水平≥2ng/ml。在14例患者中看到了肿瘤复发的形态迹象。所有这些患者的血清TG水平≥2ng/mL。重要的是,除一名患者外,所有TGAB阳性PTC患者(n = 27)没有肿瘤复发的迹象,因为血清TG水平低于该测定功能敏感性。四聚体分析显示。总而言之,我们表明TGAB的发生可能会影响PTC患者的临床结果。这可能是由于PTC患者的肿瘤表位特异性细胞免疫。
1 计算和预测生物学,生物科学,橡树岭国家实验室,美国田纳西州橡树岭 2 田纳西大学诺克斯维尔分校布雷迪森跨学科研究与研究生教育中心,美国田纳西州橡树岭 3 合成生物学,橡树岭国家实验室,美国田纳西州橡树岭 4 计算科学与工程,橡树岭国家实验室,美国田纳西州橡树岭 本稿件由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 DE-AC05- 00OR22725 撰写。美国政府保留;并且出版商在接受文章发表时,承认美国政府保留非独占的、已付费的、不可撤销的全球许可,可以为美国政府的目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据能源部公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众开放这些联邦资助研究的成果。摘要:CRISPR-Cas9 工具已经彻底改变了实验室的基因操作能力。经验法则仅针对少数模型生物建立,而 sgRNA 效率的机制基础仍然知之甚少。这项工作建立了一个使用量子化学张量生成的新特征集和新公共资源,用于解释和预测 sgRNA 效率。sgRNA 效率的特征工程是使用可解释的人工智能模型;迭代随机森林 (iRF) 执行的。通过对大肠杆菌 sgRNA 的位置特异性序列的定量属性进行编码,我们确定了细菌物种中 sgRNA 设计的重要性状。此外,我们还表明,将位置编码扩展到碱基对、二聚体、三聚体和四聚体序列的量子描述符可以捕获目标 DNA 局部和邻近核苷酸中复杂的相互作用。这些特征凸显了大肠杆菌和智人基因组之间 CRISPR-Cas9 sgRNA 动力学的差异。这些新颖的 sgRNA 编码极大地增强了我们对 CRISPR-Cas9 机制中涉及的复杂量子生物过程的理解。
背景:尽管取得成功,但检查点封锁免疫疗法已被证明在选定的肺癌患者人群中具有挑战性。这部分是由于发挥作用时广泛的肿瘤内异质性以及识别非肿瘤抗原的旁观者T细胞的渗透。最近的临床试验证明了使用大量未富含肿瘤浸润的淋巴细胞的过养细胞疗法的功效,但成功仍然有限。因此,需要新型的肿瘤抗原来进一步改善肺癌中细胞免疫疗法的成功。叉子盒M1(FOXM1)是在90%的肺癌中表达的转录因子,缺乏在脑组织中的表达,使其成为T细胞受体(TCR)工程的吸引力。有趣的是,FOXM1的上调与对酪氨酸激酶抑制剂(TKIS)的耐药性有关,强调了该靶标的另一种潜在的治疗应用。在这里,我们评估了FOXM1的免疫原性及其作为非小细胞肺癌中细胞治疗靶标的潜力。方法:分离抗原特异性T细胞,然后通过HLA匹配的健康供体PBMC的肽刺激扩展。然后,通过四聚体分选并进行单细胞TCR测序,以鉴定TCR的全长α和β链,将抗原特异性T细胞分离出来。TCR逆转录病毒设计为健康的供体PBMC,并通过Chromium-51释放(细胞毒性),ELISPOT(IFN-分泌)和ELISA(MIP-1分泌)评估功能。结果:在HLA-A*02:01(占美国人口的42%)上时,FOXM1(YLVPIQFPV)的表位是免疫原性的。该表位被证实是自然处理的,并使用H1975细胞进行了呈现。对细胞毒性的评估表明,TCR工程PBMC裂解了51%的H1975细胞,而H1975的H1975父母细胞仅为10%(p <0.0001)。通过ELISPOT评估的细胞因子评估表明,ELISA的IFN-r-斑点(P <0.05)和MIP-1分泌(P <0.05)显着增加。结论:我们的发现证实了在美国最普遍的HLA等位基因上呈现FOXM1的免疫原性,并支持TCR工程靶向FOXM1治疗肺癌的可行性。
改善未结合的A -Globin和非A -Globin链之间的平衡或纠正无效的红细胞。修饰的TFG-β家族受体拮抗剂,如Sotatercemp(ACE-011)和Luspatercept(ACE-536)阻止配体与ACTR-II受体结合,并随后激活SMAD4信号通路,4改善Ery-Throid Throid Cell和红细胞的产生。通过CRISPR Therapeatics成功的基因疗法实现了未结合A -Globin与非A -Globin链的异常比例,并得到了波士顿顶点药物的支持。称为CTX001的体细胞疗法使用了编辑的患者自己的造血干细胞(HSC)来刺激胎儿血红蛋白的产生。5通过XPO1抑制HSP70的细胞内局部局部局部局部可能会合并这两个治疗目标。几条证据表明,红细胞使用分子伴侣在红细胞发育过程中对不稳定的过量A -Glo- bin链分割,6-8,因此,靶向这种伴侣的靶向时,当过量的globobin tetramer会累积时,靶向这种伴侣可能在β -tha -thaplamasemia中有用。许多组指出,分子伴侣HSP70在红细胞9-11中积聚至高水平,对于简化胚芽成熟很重要。11正常的人红细胞成熟需要在成熟后期的caspase-3瞬时激活,以防止过度的红细胞生产。激活的胱天蛋白酶可以切割GATA-1,从而导致成熟停滞和/或凋亡。12 Ribeil等。 14 GATA-1不再受到保护,导致末期成熟停滞和凋亡。12 Ribeil等。14 GATA-1不再受到保护,导致末期成熟停滞和凋亡。表明EPO会导致HSP70转移到核中,结合GATA-1并保护其免受caspase-3裂解。相反,在EPO剥夺期间,HSP70被排除在细胞核中,而GATA-1被cas-pase-3裂解,导致凋亡死亡。13因此,HSP70的细胞内位置的改变似乎在红细胞生存力中起关键作用(图1)。在β-丘脑贫血中观察到的无效性红细胞生成的特征是在多染色体阶段加速了红细胞分化,成熟停滞和凋亡。在人β-thal虫蛋白粒细胞的成熟过程中,HSP70直接通过过量的游离A-格珠蛋白链直接在细胞质中螯合(图1)。核定靶向的HSP70突变体或caspase-3-无分解的GATA-1突变体恢复了β-thal核阿无血成红细胞的终末成熟。14在Haematologica,Guillem等。3跟进这种机制,以表明导出蛋白1(XPO1)调节在正常条件下HSP70在红细胞中的HSP70的核质质位置。Guillem等。证实,用XPO1抑制剂KPT-251治疗红细胞增加了HSP70的核水平,从caspase-3裂解中救出了GATA1,并改善了末端红细胞原理(图1)。尽管使用核出口的选择性抑制剂(SINE)用于治疗淋巴瘤和多骨髓瘤