摘要。目的。发作间期癫痫样放电 (IED) 发生在两次癫痫发作之间。IED 主要通过颅内记录捕获,通常在头皮上不可见。本研究提出了一种基于张量分解的模型,将头皮脑电图 (sEEG) 的时频 (TF) 特征映射到颅内脑电图 (iEEG) 的 TF 特征,以便以高灵敏度检测头皮上的 IED。方法。采用连续小波变换提取 TF 特征。将来自 iEEG 记录的 IED 段的时间、频率和通道模式连接成四向张量。采用 Tucker 和 CANDECOMP/PARAFAC 分解技术将张量分解为时间、频谱、空间和节段因子。最后,将来自头皮记录的 IED 和非 IED 段的 TF 特征投影到时间分量上进行分类。主要结果。模型性能通过两种不同的方法获得:受试者内和受试者间分类方法。我们提出的方法与其他四种方法进行了比较,即基于张量的空间分量分析方法、基于 TF 的方法、线性回归映射模型以及非对称对称自动编码器映射模型,然后是卷积神经网络。我们提出的方法在受试者内和受试者间分类方法中均优于所有这些方法,分别实现了 84.2% 和 72.6% 的准确率。意义。研究结果表明,将 sEEG 映射到 iEEG 可提高基于头皮的 IED 检测模型的性能。此外,基于张量的映射模型优于基于自动编码器和回归的映射模型。
基因表达的抽象调节需要在启动子和增强子上对序列特异性转录因子(TFS)的联合结合。先前的研究表明,TF结合位点之间间距的改变会影响启动子和增强子活性。然而,由于自然发生的插入和删除(Indels)导致的TF间距改变的重要性尚未系统地分析。为了解决这个问题,我们首先表征了通过ChIP-Seq(Chro-Matin免疫沉淀测序)确定的人类K562细胞中73 TF的全基因组间距关系。我们发现了协作因素之间放松的间距的主要模式,其中包括45个TFS专门与其结合伴侣展示了放松的间距。接下来,我们利用了遗传多样的小鼠菌株和人个体提供的数百万个indels来研究间距改变对TF结合和局部组蛋白乙酰化的影响。这些分析表明,与直接影响TF结合位点的遗传变异相比,通常可以容忍自然存在的插入的间距改变。为了实验验证这一预测,我们在巨噬细胞系中的六个内源基因组基因座上引入了PU.1和C/EBPβ结合位点之间的合成间距改变。在这些位置,PU.1和C/EBPβ的合作结合明显,可耐受的间距的变化范围从5 bp增加到> 30 bp的降低。总的来说,这些发现对理解增强子选择的机制以及对非编码遗传变异的解释具有影响。
转录因子(TFS)通过识别和结合特定的DNA序列来调节基因表达。有时,这些调节元件可能会被核小体遮住,从而使其无法访问TF结合。TFS和核小体之间DNA占用率的竞争以及相关的基因调节输出是基因组中编码的顺式调节信息的重要结果。但是,这些序列模式是微妙的,并且仍然难以解释。在这里,我们引入了Chromwave,这是一个深入学习模型,首次以显着的准确性来预测TF和核小体占用的竞争曲线。使用短片和长碎片MNase-seq数据训练的模型成功地学习了整个酵母基因组中TF和核小体占用的序列偏好。他们从区域概括了核小体驱逐
合成基因回路使我们能够以可编程的方式控制细胞行为,这对于几乎所有旨在利用工程活细胞执行用户定义任务的应用都至关重要。转录因子 (TF) 是合成电路构建的“经典”工具,但它们的一些固有限制,例如模块化、正交性和可编程性不足,限制了此类正向工程工作的进展。在这里,我们回顾了 CRISPR(成簇的规律间隔的短回文重复序列)技术如何为合成电路设计提供新的强大可能性。CRISPR 系统在模块化、可预测和标准化电路设计的许多方面都比 TF 具有更优越的特性。因此,选择 CRISPR 技术作为合成电路设计的框架是补充或替代合成电路中 TF 的有效替代方案,并有望实现更雄心勃勃的设计。
抽象的花色苷是园艺作物中的重要质量特征。转录因子(TFS)在花青素的生物合成中起关键的调节作用。许多TF在园艺作物中众所周知是花青素生物合成的转录激活剂,而最近已经承认抑制花青素合成的TFS。在这里,我们关注的是最近在园艺作物中对TF的作用和机制负调节花青素生物合成的最新进展。我们讨论了TFS抑制激活复合物的功能,调节阻遏物的TFS和抑制基序,以及转录后调节,翻译后修饰以及TFS的甲基化以及抑制峰基素生物合成的甲基化。这些信息将为这些TF的未来利用提供见解,以提高园艺作物的质量。
A100-80GB:由 Habana 于 2022 年 1 月在 Azure 实例 Standard_ND96amsr_A100_v4 上使用单个 A100-80GB 和来自 NGC 的 TF docker 21.02-tf2-py3 进行测量(第 1 阶段:Seq len=128、BS=312、accu steps=1024;第 2 阶段:seq len=512、BS=40、accu steps=3072)A100-40GB:由 Habana 于 2022 年 1 月在 DGX-A100 上使用单个 A100-40GB 和来自 NGC 的 TF docker 21.12-tf2-py3 进行测量(第 1 阶段:Seq len=128、BS=64、accu steps=1024;第 2 阶段:seq len=512, BS=16,accu steps=2048)V100-32GB:由 Habana 于 2022 年 1 月在 p3dn.24xlarge 上使用单个 V100-32GB 和来自 NGC 的 TF docker 21.12-tf2-py3 进行测量(第 1 阶段:Seq len=128、BS=64、accu steps=1024;第 2 阶段:seq len=512、BS=8、accu steps=4096)英特尔® Gaudi®2:由 Habana 于 2022 年 4 月在英特尔® Gaudi®2 -HLS 系统上使用单个英特尔® Gaudi®2 和 SynapseAI® TF docker 1.4.0-435 进行测量(第 1 阶段:Seq len=128、BS=64、accu steps=1024;第 2 阶段:seq len=512, BS=16,准确步骤=2048)结果可能有所不同。
虽然技术促成的暴力影响广泛,但妇女和女孩受到的影响尤为严重。15 现有证据表明,妇女更有可能因其性别和性别认同而成为攻击目标,遭受更严重的暴力形式,也更有可能面临严重和持久的负面影响。16 例如,TF VAW 通常与线下暴力直接相关 17 并且妇女通常会因为相关风险而改变使用 ICT 的方式(或选择不使用)。18 在这些方面,TF VAW 加剧了性别数字鸿沟,削弱了获取信息和服务的机会,并侵犯了妇女参与公共生活的权利。19 除了对妇女的这些更直接的负面影响之外,越来越多的研究表明,TF VAW 放大和正常化了现有的父权制暴力和厌女文化,同时促成了新文化的出现。20
简单总结:癌症是一个全球性的健康问题,后果严重。某些基因被称为转录因子 (TF),在许多肿瘤中过度活跃。针对这些 TF 可能是对抗癌症的有效方法。其中一种 TF 被称为阴阳 1 (YY1),在肿瘤发展中起着重要作用。在临床前研究中,抑制 YY1 已显示出减缓肿瘤生长、促进细胞死亡和提高化疗效果的前景。最近的研究表明,将 YY1 抑制与免疫疗法相结合可能会提高治疗效果。然而,开发专门针对 YY1 的药物并将其输送到肿瘤中存在挑战。本综述探讨了 YY1 生物学、其在癌症中的作用以及针对 YY1 的各种策略,包括小分子抑制剂、RNA 干扰和基因编辑技术。这些发现强调了 YY1 靶向治疗的临床意义以及可以改善患者预后的新治疗方法的潜力。
- ESMA 认为不存在低风险的 CASP。虽然 CASP 的活动规模通常不如传统金融实体那么全面,但 CASP 通常直接与散户投资者打交道,在监管合规和监督方面业绩有限。因此,它们应被视为比在更成熟的行业运营的实体构成更高的风险。- 因此,不应存在基于“低风险”分类的粗略评估的情况。- 相反,在评估 CASP 申请时使用基于风险的方法只会导致对在特定情况下可能存在高于平均风险的实体进行更严格的审查。- CASP 呈现的洗钱和恐怖主义融资 (ML/TF) 风险通常很高。由于其业务结构的特定特征、业务的跨境性质以及所使用的技术,CASP 面临 ML/TF 风险,这使得它们能够在全球范围内即时转移加密资产并吸引不同司法管辖区的客户。当他们处理或促进交易或提供匿名性较高的产品或服务时,风险会加剧。因此,这是一个值得特别关注的领域。EBA 的 ML/TF 风险因素指南 1 提供了有关 CASP 带来的 ML/TF 风险的更多详细信息,并支持 NCA 评估该风险。