具有毛状特征的高级别星形细胞瘤 (HGAP) 是中枢神经系统肿瘤分类分子和实践方法信息联盟 (cIMPACT-NOW) 1 在 2021 年世界卫生组织 (WHO) 分类中定义的一种新型实体,即表现出具有间变性特征的毛状细胞学、频繁的丝裂原活化蛋白激酶 (MAPK) 通路改变、细胞周期蛋白依赖性激酶抑制剂 2A/B (CDKN2A/B) 纯合缺失、以及 α-地中海贫血/智力迟钝综合征 X 连锁 (ATRX) 突变或缺失的星形细胞瘤。 1 HGAP 主要发生在小脑中,可从头发展或通过低度病变发展,通常伴有神经纤维瘤病 1 型 (NF1)、B-Raf 原癌基因 (BRAF) 或成纤维细胞生长因子受体 1 (FGFR1) 突变。其预后被认为介于毛细胞星形细胞瘤之间
β-thal无血症是最常见的遗传疾病,其特征是降低或不存在β-珠蛋白链合成和血红蛋白A产量(1-3)。据报道,估计全球人口的1.5%为β-丘脑贫血携带者(4)。 在来自非洲国家,印度次大陆,地中海,中东和东南亚的个人或祖先的个人中最常见(1-6)。 近年来,欧洲和北美β地中海贫血的流行率一直在上升,这在很大程度上归因于移民模式(7)。 β-thal核酸可以根据对输血的依赖水平(8),分为非转化依赖性thalassya(NTDT)和依赖性依赖性丘脑(TDT)(TDT)。 根据一项为期10年的回顾性队列研究,英格兰TDT的死亡率为6.2%,显着高于一般人群的年龄/性别调整的死亡率1.2%(9)。 在输血依赖性的β-丘脑贫血患者中,心肌铁超负荷的发生率从早期研究中的11.4% - 15.1%增加到最近的研究中的26.1% - 36.7%(10,11)。 这可能是由于生存率增加,导致合并症率更高(12,13)。 心血管疾病仍然是β-心理症患者死亡的主要原因,而铁超负荷仍然是一个显着的挑战(14)。 两种机制负责β-丘脑中的铁超载:由于无效的红细胞生成和输血而导致铁吸收增加(15)。 TDT患者接受输血,等于平均每日摄入据报道,估计全球人口的1.5%为β-丘脑贫血携带者(4)。在来自非洲国家,印度次大陆,地中海,中东和东南亚的个人或祖先的个人中最常见(1-6)。近年来,欧洲和北美β地中海贫血的流行率一直在上升,这在很大程度上归因于移民模式(7)。β-thal核酸可以根据对输血的依赖水平(8),分为非转化依赖性thalassya(NTDT)和依赖性依赖性丘脑(TDT)(TDT)。根据一项为期10年的回顾性队列研究,英格兰TDT的死亡率为6.2%,显着高于一般人群的年龄/性别调整的死亡率1.2%(9)。在输血依赖性的β-丘脑贫血患者中,心肌铁超负荷的发生率从早期研究中的11.4% - 15.1%增加到最近的研究中的26.1% - 36.7%(10,11)。这可能是由于生存率增加,导致合并症率更高(12,13)。心血管疾病仍然是β-心理症患者死亡的主要原因,而铁超负荷仍然是一个显着的挑战(14)。两种机制负责β-丘脑中的铁超载:由于无效的红细胞生成和输血而导致铁吸收增加(15)。TDT患者接受输血,等于平均每日摄入由于无效的红细胞产生,NTDT患者患有贫血和缺氧,从而抑制了肝素表达,从而促进了肠中铁的吸收(16,17)。此外,低水平的肝素会导致转铁蛋白的上调,从而进一步促进巨噬细胞过度释放铁(18)。
摘要:中性粒细胞外陷阱(NET)是复杂的,基于DNA的,具有细胞毒性蛋白的网络状结构。它们在抗菌防御中起着至关重要的作用,但也与自身免疫性疾病和组织损伤有关。净形成过程(称为Netosis)是一种受调节的细胞死亡机制,涉及这些结构的释放,并且是中性粒细胞独有的。Netosis在很大程度上取决于活性氧(ROS)的产生,可以通过NADPH氧化酶(NOX)或线粒体途径产生,分别导致NOX依赖性或与NOX无关的Netosis。最近的研究表明,在不同情况下,ROS产生,DNA修复和净形成之间存在复杂的相互作用。紫外线辐射可以触发由线粒体ROS和DNA修复驱动的Netosis和凋亡的组合过程,称为凋亡。同样,在钙离子载体诱导的Netosis中,ROS和DNA修复都是关键组成部分,但仅发挥部分作用。在细菌感染的情况下,DNA修复的早期阶段是关键的。有趣的是,在无血清条件下,自发性Netosis是通过NOX衍生的ROS发生的,并具有早期DNA修复抑制可以停止该过程,而后期抑制会增加。DNA修复过程与ROS产生之间的复杂平衡似乎是调节净形成的关键因素,其不同的途径根据刺激的性质而被激活。这些发现不仅加深了我们对Netosis背后机制的理解,而且还提出了对网络有助于疾病病理学的疾病的潜在治疗靶标。
患有β-丘脑贫血或镰状细胞疾病的个体以及具有30%胎儿血红蛋白(HBF)的胎儿血红蛋白(HPFH)的遗传性持久性似乎无症状。在这里,我们使用了非整合HDAD5/35 ++矢量,该矢量表达了腺嘌呤基础编辑器(ABE8E)的高效,准确的版本(在体内安装A –113 A> g HPFH突变中,在健康CD46/β-yac小鼠中含有人β-糖的γ-蛋白启动子中的γ-蛋白启动子中的γ-蛋白启动子。我们的体内造血干细胞(HSC)编辑/选择策略仅涉及S.C.和i.v.注射,不需要骨髓和HSC移植。在CD46/β-YAC小鼠中的体内HSC碱基编辑中导致> 60%–113 A> g转化率,β-蛋白的30%γ-球蛋白在70%的红细胞中表达。 重要的是,未检测到在圆形序列或计算机中预测的位点的脱靶编辑。 此外,RNA-Seq没有发现体内编辑小鼠的转录组的临界变化。 在体外,在β-thal症和镰状细胞疾病患者的HSC中,基本编辑器载体介导的有效效率–113 A> g转化和γ-珠蛋白表达的重新激活,并随后对等肌酸细胞的表型校正。 由于我们的体内基础编辑策略在技术上是安全且技术简单的,因此它具有流行血红蛋白病的发展中国家的临床应用。导致> 60%–113 A> g转化率,β-蛋白的30%γ-球蛋白在70%的红细胞中表达。重要的是,未检测到在圆形序列或计算机中预测的位点的脱靶编辑。此外,RNA-Seq没有发现体内编辑小鼠的转录组的临界变化。在体外,在β-thal症和镰状细胞疾病患者的HSC中,基本编辑器载体介导的有效效率–113 A> g转化和γ-珠蛋白表达的重新激活,并随后对等肌酸细胞的表型校正。由于我们的体内基础编辑策略在技术上是安全且技术简单的,因此它具有流行血红蛋白病的发展中国家的临床应用。
结果:研究中包括16名患者(15名女性,1名男性),平均年龄为32岁(范围:17-38岁)。所有患者的随访期至少为3个月,平均随访为7个月。患者满意度评估表明,有13名患者非常满意,3例患者感到满意,并且没有不满意的病例。所有患者的泪突出程度均降低,肩thal骨的形状是自然的,双侧眼睑裂缝的大小合适,并且平行双眼眼睑转化为扇形双眼眼睑。切口疤痕的外观并不突出,线条平滑。canthal距离的增加范围为3毫米,ICD伸长率范围从9.09%到28.30%。术前测量的癌间距离范围为28至35.0mm,平均为31.25±2.32mm,术后测量为35.19±2.26mm。差异具有统计学意义(t = -4.793,p <0.001)。眼睛运动没有紧急或不适感,结果令人满意。
雅高酒店;法国开发署(AFD);空客;法国航空;液化空气集团;阿尔斯通;阿泰莉亚;源讯;安盛;法国银行;贝尔集团;法国巴黎银行;博洛尔;布依格建筑;必维国际检验集团(Bureau Veritas);法国商务投资; Canal+、凯捷、家乐福;计算机辅助设计/计算机辅助制造;独联体;法国达飞轮船;可乐;农业信贷;频道+;达能;法国电力公司;保护; ENGIE;埃赫梅特;法国专业知识;爱马仕;约翰·科克里尔集团;欧莱雅;路威酩轩集团;米其林;欧洲和外交部(MEAE);法国外贸银行;海军集团;日产全球管理;橙子;奥拉诺;保乐力加;阳狮; SEB集团;斯特兰蒂斯;巴黎公共交通局;雷诺集团;藏红花;圣戈班;塞班岛;赛诺菲;萨文西亚;負責;施耐德电气;一般社会;索迪斯; Spie 石油和天然气服务公司;意法半导体;苏伊士; T.EN 能源; Technip N-Power;泰雷兹;总能量;法雷奥;威立雅;瓦卢瑞克;芬奇。
输血依赖性的β-thal症(TDT)和镰状细胞疾病(SCD)是严重且潜在危及生命的表现的疾病。bcl11a是抑制红色细胞中γ-球蛋白表达和胎儿血红蛋白的转录因子。我们进行了从健康供体获得的CD34+血液 - 贫血细胞和祖细胞的电穿孔,而CRISPR-CAS9靶向Bcl11a红细胞特异性增强子。该基因座的大约80%的等位基因进行了修改,没有脱靶编辑的证据。经过骨髓化后,两名患者 - 一名患有TDT的患者,另一名患有SCD的患者,以CRISPR-CAS9为靶向相同的BCL11A增强剂,以自体CD34+细胞。一年多以后,两名患者在骨髓和血液中的等位基因编辑水平很高,胎儿血红蛋白的增加,这些胎儿血红蛋白被泛细胞分布,输血独立性,并且(在SCD患者中)消除了血管合格发作。(由CRISPR Therapeutics和Vertex Pharma-Ceuticals资助; ClinicalTrials.gov编号,NCT03655678用于攀登-111和NCT03745287,用于攀登SCD-121。)t
在近年来,已将定期间隔间隔的短篇小学重复(CRISPR)/ CRISPR相关蛋白9(CAS9)技术聚集为快速发展的工具,以提供改变目标序列表达和功能的可能性。CRISPR/CAS9工具目前正在用于治疗无数的人类疾病,从遗传疾病和感染到癌症。初步报告表明,CRISPR技术可能会对Duchenne肌肉营养不良(DMD),囊性纤维病(CF),β-thal核病,亨廷顿的疾病(HD)等产生重大影响。尽管如此,高目标效应的高率可能会阻碍其在诊所中的应用。因此,最近的研究集中在新的策略上的发现,以改善这些脱靶效应,从而导致人类,动物,原核生物以及植物的高限制和准确性。同时,有明确的证据表明,具有较高效率的特定SGRNA的设计至关重要。相应地,阐明有助于确定SGRNA效率的主参数是先决条件。在此,我们将提供有关CRISPR技术治疗人类疾病的治疗应用的概述。更重要的是,我们将讨论涉及CRISPR/CAS9技术中SGRNA效率的有效影响参数(例如SGRNA结构和特征),并具有对人类和动物研究的特殊浓度。