人工智能的起源:1950-1980 我们现在所理解的人工智能 (AI) 领域,是在 1956 年夏天由人工智能创始人之一约翰·麦卡锡 (斯坦福大学) 在达特茅斯组织的为期两个月的研讨会上得到推动的。人工智能这个术语就是在这次研讨会上提出的。麻省理工学院 (MIT)、IBM、普林斯顿大学、卡内基梅隆大学 (CMU) 都有出色代表。来自 CMU 的 Allen Newell 和 Herbert Simon 展示了一个模拟逻辑决策某些方面的程序原型。这引起了人们对未来的极大兴趣和希望。在 20 世纪 60 年代和 70 年代,知识表示和问题解决的大部分基础都是在 CMU、斯坦福、麻省理工学院和 IBM 奠定的。这些努力(可能 IBM 除外)由国防高级研究局 (DARPA) 资助。在此期间出版的 Herbert Simon 的《人工智能科学》(麻省理工学院出版社)、Christopher Alexander 的《形式合成笔记》(哈佛大学出版社)和 Marvin Manheim 的《层次结构:设计和规划过程模型》(麻省理工学院出版社)为 20 世纪 80 年代和 90 年代人工智能在设计领域的应用奠定了基础。人工智能的两个显著应用在 20 世纪 70 年代中期首次亮相,推动了知识型专家系统 (KBES) 的发展:用于内科的 MYCIN 和用于地质勘探的 PROSPECTOR。这些系统专注于分类类型问题,并导致开发用于构建诊断 KBES 的领域独立工具。除了 Thanet Norabhoompipat 在 Steven Fenves 教授的指导下发表了一篇博士论文,讨论了解决工程问题所需的几种 AI 问题解决技术外,很少有关于将 AI 应用于工程问题的活动。工程领域 AI 的兴起:20 世纪 80 年代 20 世纪 80 年代,AI 在工程领域的应用开始兴起,该领域主要由美国的卡内基梅隆大学、斯坦福大学和麻省理工学院主导。我很幸运当时在卡内基梅隆大学,在那里我接触到了该领域中坚力量的讲座。我将自己进入该领域的功劳归功于语音识别先驱、卡内基梅隆大学机器人研究所所长 Raj Reddy 教授和土木工程计算应用先驱、美国国家工程院院士 Steven J. Fenves 教授。
人工智能的起源:1950-1980 我们现在所理解的人工智能 (AI) 领域,是在 1956 年夏天由人工智能创始人之一约翰·麦卡锡 (斯坦福大学) 在达特茅斯组织的为期两个月的研讨会上得到推动的。人工智能这个术语就是在这次研讨会上提出的。麻省理工学院 (MIT)、IBM、普林斯顿大学、卡内基梅隆大学 (CMU) 都有出色代表。来自 CMU 的 Allen Newell 和 Herbert Simon 展示了一个模拟逻辑决策某些方面的程序原型。这引起了人们对未来的极大兴趣和希望。在 20 世纪 60 年代和 70 年代,知识表示和问题解决的大部分基础都是在 CMU、斯坦福、麻省理工学院和 IBM 奠定的。这些努力(可能 IBM 除外)由国防高级研究局 (DARPA) 资助。在此期间出版的 Herbert Simon 的《人工智能科学》(麻省理工学院出版社)、Christopher Alexander 的《形式合成笔记》(哈佛大学出版社)和 Marvin Manheim 的《层次结构:设计和规划过程模型》(麻省理工学院出版社)为 20 世纪 80 年代和 90 年代未来在设计领域使用人工智能奠定了基础。人工智能的两个显著应用在 20 世纪 70 年代中期首次亮相,推动了知识型专家系统 (KBES) 的发展:用于内科的 MYCIN 和用于地质勘探的 PROSPECTOR。这些系统专注于分类类型问题,并导致开发用于构建诊断 KBES 的领域独立工具。除了 Thanet Norabhoompipat 在 Steven Fenves 教授的指导下发表了一篇博士论文,讨论了解决工程问题所需的几种 AI 问题解决技术外,将 AI 应用于工程问题的活动非常少。工程领域 AI 的兴起:20 世纪 80 年代 20 世纪 80 年代,AI 在工程领域的应用开始兴起,该领域主要由美国的卡内基梅隆大学、斯坦福大学和麻省理工学院主导。我很幸运当时在卡内基梅隆大学,在那里我接触到了该领域中坚力量的讲座。我将自己进入该领域的功劳归功于语音识别先驱、卡内基梅隆大学机器人研究所所长 Raj Reddy 教授和土木工程计算应用先驱、美国国家工程院院士 Steven J. Fenves 教授。
表 4.5.4:需要纳入 RIAA 的海洋哺乳动物 SAC......................................................................................................... 33 表 4.5.5:需要评估 RIAA 中的影响......................................................................................................................... 35 表 4.5.6:需要纳入 RIAA 的栖息地 SAC......................................................................................................... 38 表 4.6.1:已确定 LSE 的欧洲地点和合格特征......................................................................................... 39 表 5.2.1:与评估对 SPA 的影响相关的设计范围参数......................................................................................... 42 表 5.2.2:与评估对海洋哺乳动物 SAC 的影响相关的设计范围参数......................................................................................................................... 43 表 5.2.3:与评估对 SAC 栖息地特征的影响相关的设计范围参数......................................................................................................................... 44 表5.3.1:嵌入式措施 – 鸟类学 ...................................................................................................... 45 表 5.3.2:与海洋哺乳动物有关的嵌入式缓解措施 ...................................................................... 46 表 5.3.3:嵌入式措施 – 物理过程和水质 ......................................................................