近年来,降低人工智能风险已成为人们努力的议题。这些善意的努力源于对人工智能技术快速发展所带来的不确定未来的真正担忧。以目前的形式,这些努力不太可能成功。我们想要证明的是,在我们的社会向广泛使用人工智能技术过渡的过程中,开发深度学习的基本数学理论是管理风险的先决条件。在这种情况下,理论是指遵循物理和工程原理,识别精确的可测量数量并用数学方法描述它们的模式,而不一定证明严格的定理。统计推断和优化理论最近取得了重大进展,这主要得益于神经网络的实证成功,这让我们希望,这样的理论确实是可能实现的,而且触手可及。不可否认,即使是全面的深度学习理论也不能保证在不久的将来成功过渡到人工智能社会。但是,如果我们不具备基本的理解,我们肯定无法控制或防止人工智能系统的滥用,因为它们的行为已经达到或超过了人类行为的复杂性。以前从未有过一项技术在对其基本原理的理解如此之少的情况下得到如此广泛和如此迅速的部署。鉴于快速发展的人工智能对社会的影响,这是一个紧迫而重要的问题。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。2703-2714,文章ID:IJCET_16_01_190在线可在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_1_190
Shalini Chandra 是新加坡 SP Jain 全球管理学院的副教授。加入 SP Jain 之前,她曾在新加坡南洋理工大学 (NTU) 担任研究员,并拥有该大学的博士学位。她的研究成果发表在多家国际同行评审期刊上,如《MIS Quarterly》(MISQ)、《信息系统协会杂志》(JAIS)、《信息系统杂志》(ISJ)和《AIS 通讯》(CAIS)等。她还在信息系统领域的几场顶级会议上展示了她的研究成果,如国际信息系统会议 (ICIS)、管理学院 (AOM)、亚太信息系统会议 (PACIS) 和美洲信息系统会议 (AMCIS),以及国际通信协会 (ICA) 等顶级通信会议。她的研究兴趣包括技术支持的创新和新的协作技术、新技术的采用和接受、技术的阴暗面和社交媒体。
我们通过重现Hilbert空间的相关协方差操作员来考虑概率分布的分析。我们表明,这些操作员的冯·诺伊曼熵和相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与概率分布的各种牙文的有效估计算法一起出现。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只有部分条件的独立性。我们最终展示了这些新的相对熵的新概念如何导致日志分区函数上的新上限,这些概念可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
摘要 — 本研究提出了一种能够从零点能量 (ZPE) 场中提取能量的装置的理论公式和设计。通过整合霍金辐射、量子信息论和量子场论的原理,我们提出了一种新的能量提取机制。该装置具有一个事件视界模拟器和一个能量提取机制,旨在利用量子涨落,类似于黑洞附近的条件。我们通过严格的数学公式验证了该设计,包括 ZPE 的正则化技术以及与核聚变和裂变过程的相似性。此外,通过将封闭系统视为暗物质黑洞并采用非交换几何,该装置探索了物质和能量的奇异状态。这些先进的理论构造对于保持量子相干性和实现有效的能量提取至关重要。该设计采用了尖端材料和超导技术,量子信息处理确保遵守能量守恒。这项研究的潜在影响是巨大的,为能源生产提供了一种可持续的革命性方法。未来的技术进步和持续的研究对于实际实现至关重要,为未来能源技术的重大贡献铺平了道路。
在理论量子物理学2中,这种终身制立场是在理论物理学中进行独立的研究和教学。研究的主要领域应在理论上的量子物理学中,特别关注量子物理学中的凝结物质,量子信息或机器学习。还将考虑出色的合格候选者,以量子光学的研究重点进行研究。未来的合作是与Innsbruck物理研究中心的各个研究小组一起进行的。我们还希望与其他国家和国际顶级研究机构的合作伙伴合作,并参与合作项目(例如,与量子光学和量子信息研究所(IQOQI),卓越量子群,特殊研究领域)。教授教学的范围包括理论物理领域。这包括在物理和物理教师学位课程中的学士学位,硕士和博士学位课程中的指导以及对学生(共同)监督的监督。候选人有望参与数学,计算机科学和物理学院的战略发展,以及学术自我管理和研究所,物理学系和教职员工的学术自我管理和管理。就业要求包括a)物理学博士学位(或相关学科),重点是理论物理学; b)DOC后经验和/或专业经验; c)领导
理论量子物理学 2 职责 这个终身职位是在理论物理学方面进行独立的研究和教学。 主要研究领域应该是理论量子物理学,特别关注凝聚态、量子信息或量子物理中的机器学习。 研究重点是量子光学的优秀合格候选人也将被考虑。 我们希望未来与因斯布鲁克物理研究中心的各个研究小组进行合作。 我们还期望与其他顶尖国内外研究机构的合作伙伴合作并参与合作项目(例如,与量子光学和量子信息研究所(IQOQI)、QuantA 卓越集群、特殊研究领域)。 教授教学范围包括理论物理领域。 这包括物理学和物理教师学位课程的学士、硕士和博士课程的教学,以及对学生的指导,包括(共同)指导论文。应聘者应参与数学、计算机科学和物理学院的战略发展以及学院、物理系和教职员工的学术自主管理。应聘要求包括:a) 物理学博士学位(或相关学科),侧重于理论物理学;b) 博士后经历和/或专业经验;c) 博士学位以外的科学成就,由领先的出版物证明
在范围内高度国际化的书涵盖了许多国家,并深入探讨了有关气候变化适应的研究和项目。它是寻求促进气候变化适应工作的政府和非政府机构的宝贵资源。本书通过提供该主题的详细概述来填补市场利基市场,使其成为气候变化管理(CCM)系列的一部分。本书着重于可以帮助读者应对气候变化带来的社会,经济和政治挑战的方法,方法和工具。它的目的是通过收集在“第二届世界气候变化适应性研讨会上提出的论文”来加快气候变化适应领域的发展。这本跨学科的书涵盖了气候变化适应领域的各个关键领域,强调了实施气候变化适应的综合方法。文本强调了解决气候变化的重要性,正如政府间气候变化小组(IPCC)发布的第五次评估报告(AR5)和当事方(COP 25)建议的第五次评估报告(AR5)所强调。这本书确实是全面的,不仅涵盖了建模和预测所提供的知识,还涵盖了气候变化的社会,经济和政治含义。已经发表了几十年来,已经发表了关于第四纪晚期的古海洋学和古气候学的研究。学者,例如Cline,Hays,Crane,Crowell,Frakes,Dansgaard,Johnsen和Clausen,为这一研究领域做出了贡献。洛克伍德(Lockwood)长期气候变化 * W.F.的研究研究表明,正如1956年Ewing和Donn首次提出的地球轨道的变化可能是造成冰期的原因。也考虑了其他因素,例如太阳辐射的变化(Hoyle和Lyttleton,1950年)和大气灰尘含量(Davitaya,1969年)。对海平面和冰期后隆起的研究为冰河时代对全球气候的影响提供了证据。例如,Farrand(1962)和Farrell和Clark(1976)的研究表明,海平面的变化与冰川周期密切相关。气候建模已变得越来越复杂,诸如盖茨(Gates)(1976)的冰原气候模型等研究为这种复杂现象提供了新的见解。埃迪(Eddy,1982)探索了太阳变异性在驱动气候变化中的作用,对极地海洋的研究(Crane,1981)揭示了大气与海洋之间的相互作用。还研究了冰川对全球生态系统的影响,包括格罗夫和沃伦(Grove and Warren)(1968年)在非洲关于第四纪地面和气候的研究,为这一领域提供了宝贵的见解。总的来说,这篇研究论文的集合强调了冰河时代的复杂性及其与地球轨道,太阳辐射和大气条件的变化的关系。此参考清单包括有关气候变化和可变性的各种研究和论文。出版了几十年,这些作品探讨了气候科学的不同方面,包括冰河时代的原因,太阳可变性和天气模式之间的关系以及人类活动对环境的影响。气候变化。此列表中提到的一些关键作者包括: * G. Kukla,他写了有关冰间术的轨道签名 * H.H.兰姆(Lamb)是一位著名的气候学家,他发表了两卷有关气候,过去和未来的卷。ruddiman在氧气同位素和古磁性地层上进行的研究。该清单还包括与气候变化相关的各种主题,例如: *风险的原因 * * *的环境 *改变地质时标。总的来说,此参考列表提供了对气候变化和可变性的科学理解的全面概述,突出了该领域的主要作者,研究和发现。巴黎:联合国教科文组织,pp。277–281。Google Scholar Taylor,B。L.,T。Gal-Chen和S. H. Schneider,1980。火山喷发和长期温度记录,q。jour。皇家陨石。Soc。106,175–199。Google Scholar Turekian,K。K.(ed。),1971年。晚期的冰川冰期年龄。纽黑文:耶鲁大学出版社。Google Scholar Vernekar,A。D.,1972。远程辐射的长期全球变化,陨石。Monogr。12,编号34。冰川学5,145–158。波士顿;美国气象学会。Google Scholar Weertman,J。,1964年。在非平衡冰盖上的生长速度或收缩率,Jour。Google Scholar Weertman,J。,1966年。基底水层对冰盖尺寸的影响,jour。冰川学6,191–207。Google Scholar Weertman,J。,1976。Milankovitch太阳辐射在冰河时代冰盖尺寸,自然261,17-20。Google Scholar Weyer,E。M.,1978。杆运动和海平面,自然273,18-21。Google Scholar Weyl,P。K.,1968。海洋在气候变化的原因中的作用在气候变化中。Monogr。8,J。Mitchell(编辑)。波士顿:美国气象学会,pp。37–62。Google Scholar Williams,J。,1975。雪地对大气循环的影响及其在气候变化中的作用,Jour。应用。陨石。14,137–152。Google Scholar Wilson,A。T.,1964年。冰的起源:冰架理论,自然201,147-149。Google Scholar Wilson,A。T.,1966年。太阳能对南极区域的变化作为触发,自然210,477–478。Google Scholar Wilson,A。T.,1970年。南极冰潮,南极期间。美国5,155–156。Google Scholar Woerkom,A。J. Van,1953年。气候变化的天文学理论,在气候变化中,H。Shapley(ed。)。剑桥,马萨诸塞州:哈佛大学出版社,pp。147–157。Google Scholar Wollin,G.,1974。Goemagnetic变化和气候变化,Colloq。int。CNRS 219,273–286。Google Scholar Wollin,G.,D。B. Ericson和W. B. F. Ryan,1971年。磁强度和气候变化的变化,自然232,549–551。Google Scholar Wollin,G.,W。B. F. Ryan和D. B. Ericson,1978年。气候变化,地球轨道,地球和行星SCI的磁强度变化和波动。字母41,395–397。Google Scholar Wright,H。E.和D. G. Frey(编辑),1965年。美国第四纪。普林斯顿:普林斯顿大学出版社。今天,由于对气候如何影响我们的生活质量和环境的公众认识,人们对气候信息的需求不断增长。为了满足这一需求,气候学百科全书提供了对气候所有主要子场的全面覆盖,包括有关主要大陆地区气候的数据以及对气候过程和变化的已知原因的解释。酸雨已成为工业化国家的紧迫环境问题。虽然这个话题经常笼罩在政治言论和情感猜测中,但证据表明,在20世纪后期的几十年中,酸雨将继续越来越关注。要掌握酸雨的性质及其潜在的后果,必须了解酸度的概念以及大气过程如何通过降水影响酸性物质的沉积。酸度的特征是在水基溶液中存在游离氢离子(H+),以对数pH量表进行测量,其中7代表中性,降低值表明酸度增加,而增加值表示碱度。