摘要:盐水环境经常在冷却和注入系统中发现。当钢暴露于类似的环境时,它会得到点腐蚀。为了防止这种现象,使用腐蚀抑制剂很重要。这项工作评估了羟基磷灰石作为钢的潜在腐蚀抑制剂的功效。这是该化合物在盐水环境中作为抑制剂的第一个应用。使用X射线衍射,傅立叶变换红外光谱,化学分析和SEM/EDX研究了合成的产品,以表征其性质和形态。通过电化学技术,包括固定极化曲线(PDP),开路电位(OCP)和电化学阻抗光谱(EIS),HAP在NaCl中的抑制效率是3%培养基。合成的产品是羟基磷灰石,CA/P比为1.67。电化学研究表明,HAP能够预防3%NaCl的腐蚀,当抑制剂浓度为100 ppm时,抑制效率超过91%。另外,抑制剂的类型主要与阴极混合。HAP分子的吸附与Langmuir的吸附等温线一致。另外,金属表面的SEM/EDX分析表明,在界面钢/NaCl上形成屏障膜,该膜由HAP的主要元素组成。理论方面是通过密度功能理论(DFT)和分子动力学(MD)模拟进行的。理论方法的结果(DFT和MD模拟)通过显示合成材料的抑制效率的类似趋势来证实所有实验结果,并表明HAP可以在3%NaCl中充当出色的钢抑制剂。
在这项工作中,进行电化学测试以测量在存在离子液体(ILS)1-乙基-3-甲基咪唑乙酸酯((EMIM) +(AC) - 1-乙基-3-乙基-3-甲基-3-甲基咪唑烷基咪唑硫酸盐(BR Bromomide)的情况下,在碳钢自由溶解过程中测量氢渗透率(ILS)。 1-叔丁基-3-甲基咪唑唑化三氟甲氟化[(BMIM) +(BF 4) - ]在5.4 mol L -1 HCl水溶液中。还评估了还评估了5-羟基-2-硝基甲基 - 二苯胺(HPY)和商业腐蚀抑制剂(CCI)的渗透抑制效率(IEP(%))。在IL中,(BMIM) +(BF 4) - 化合物呈现出最高的腐蚀和氢渗透抑制效率,值分别为23%和30%。(EMIM) +(br)和(EMIM) +(AC) - 化合物无效抵抗腐蚀,但它们的IEP分别为15.8%和23%。HPY化合物在预防腐蚀方面表现出61%的有效性,而在计算机评估中则表明毒性没有毒性。但是,HPY化合物和CCI化合物在腌制过程中均未抑制氢进入碳钢。
摘要:这项研究使用了电力动力学极化曲线的测量,电化学障碍光谱(EIS)和量子化学计算来检查硫酸和咖啡因在硫酸硫酸硫酸中硫酸腐蚀的抑制性和吸附性能(H 2 SO 4)溶液(H 2 So 4)溶液。获得的结果表明,在0.5 m H 2 SO 4溶液中,Linalool比咖啡因比咖啡因更有效。电位动力学极化曲线表明,Linalool充当混合型抑制剂,而咖啡因是0.5 m H H 2 SO SO 4溶液中低调钢的阳极型抑制剂。根据阻抗测量值,腐蚀机制发生在激活控制下。理论拟合也用于评估包括Langmuir,Flory-Huggins和动力学模型在内的各种吸附等温线。。这两种抑制剂都通过碳钢表面的物理吸附机制作用。但是,它们的吸附过程是一个非理想的过程。量子化学参数被计算并解释。
背景。全球约有11个成年人患有糖尿病疾病,患病率不断增加;从2021年登记的5.29亿患者中,糖尿病患者的数量预计将在2050年增加到约13.1亿。在意大利,有5.9%的人口是糖尿病患者,患病率较高,年龄增加和该国南部。瑜伽和正念可以代表对糖尿病学科的护理的有效支持,尤其是在诸如Covid-19大流行等压力很大的关怀环境中。研究设计。进行了范围审查,以实现研究的目标。瑜伽或正念干预措施,并在选定的随机对照试验中收集的定性定量数据进行了广泛的荟萃分析。方法。在发生冲突时,对两名独立从业人员进行了审查,并咨询了第三名。使用Prisma方法来选择和报告要包括在内的研究。在PubMed,Embase和Psycinfo数据库上已经开发了特定的PICO和搜索策略。审查中包括:随机对照试验,全文论文文章和英文论文,并于2022年5月31日进行时间限制。结果。评论包括22项研究; 12关于正念,9关于瑜伽,而两个学科则是一个;其中,一名研究患有1型糖尿病的患者,14例患有2型糖尿病的患者,其中6例,另一位患有妊娠糖尿病。结论。只有一张纸研究青少年受试者,而其他21名纸则集中在一系列成人受试者上。研究表明,瑜伽和正念不仅在压力管理上,而且对临床代谢参数具有强大的潜力。最近的COVID-19大流行肯定重新设计了一种治疗和管理慢性疾病(例如糖尿病)的新方法。越来越脆弱的人口,并且随着降低总体压力水平的日益增长的需求,可以在瑜伽和正念方面找到支持常规疗法的替代实践。
信息:armida.sodo@uniroma3.it;antonio.benedetto@uniroma3.it 从量子理论的角度理解引力的基本性质是理论物理学中一个重要的未决问题。最近,引力量子系统的研究,例如在位置的量子叠加中准备的、以引力场为源的大规模量子系统,引起了广泛关注:实验正在努力在实验室中实现这种场景,测量与量子源相关的引力场有望提供有关引力量子方面的一些信息。然而,关于这些实验可以得出关于引力性质的确切结论,仍然存在一些悬而未决的问题,例如,这种状态下的实验是否能够测试引力场的更多部分。在我的演讲中,我将举例说明量子信息工具(例如通信协议)如何有助于在低能(思想)实验中识别引力的量子方面。然后,我将讨论需要对当前悬而未决的问题给出可靠答案的理论研究方向。 TEAMS 链接:https://teams.microsoft.com/l/meetup-join/19%3a8f9ec19800e7467ab9bae6e627dfcb21%40thread.tacv2/1705662207480?context=%7b%22Tid%22 %3a%22ffb4df68-f464-458c-a546-00fb3af66f6a%22%2c%22Oid%22%3a%2234c00d0e-4085-4def-be95-f11f6239bc3d%22%7d
萜类化合物是在各种生物体,尤其是植物中发现的大量有机化合物。萜类化合物具有多种生物学功能和化学特性,并且在生态学,药物和工业中具有重要作用[1-4]。含有萜类化合物的精油生产香水,化妆品和食物[5-8]。几种萜类化合物具有潜在的健康影响。有些具有抗炎,抗菌和抗氧化特性[9-10]。此外,萜类化合物可能是抑制腐蚀剂的,尤其是在易受腐蚀的金属的环境中[11-15]。这些化合物可能在金属表面上形成保护层,从而抑制引起腐蚀的电化学反应。萜类化合物可以通过几种机制作为腐蚀抑制剂,包括在金属表面上形成一个被动层,吸收在金属表面上以防止腐蚀性物质,并在金属溶液界面上改变电化学特性。萜类化合物作为腐蚀抑制剂具有额外的优势,因为它们比许多腐蚀性化合物或合成腐蚀抑制剂更自然和环保[16-20]。关于萜类化合物作为腐蚀抑制剂的实验研究尚未广泛发表。另一方面,分子建模可以提供对绿色有机化合物作为腐蚀抑制剂的潜力的初步见解[21-25]。柠檬型萜类化合物作为铜腐蚀抑制剂。理论研究可以通信作者:rizal@unram.ac.id
背景:区块链有望减轻药品供应链中消费者对仿制药的风险规避和质量不确定性。本研究调查了区块链采用对披露市场上与原药竞争的仿制药质量信息的影响,并提出了相应的法律措施。方法:我们采用博弈论模型分析包括仿制药制造商、原药制造商和零售商的药品供应链。我们研究供应链成员何时应采用区块链来处理仿制药以及区块链如何影响药品供应链。结果:我们的结果表明,仿制药的质量信息决定了区块链采用如何影响仿制药和原药的价格和销售数量。此外,我们观察到,只有当消费者的风险规避程度足够低时,仿制药制造商和零售商才会决定采用区块链。此外,较低的风险规避程度可以通过采用区块链提高整个供应链的盈利能力,并为消费者、仿制药制造商和零售商创造采用区块链的三赢局面。结论:为了减轻消费者的风险规避,法律应该维护消费者权益。区块链的应用在一定条件下可以惠及药品供应链和消费者,但也需要供应链成员利益的协调和质量信息的公开。关键词:仿制药,药品供应链,风险规避,质量不确定性,区块链应用
作者:ML De Sciscio · 2022 · 被引用 7 次 — 理论评估。基于硫的反应作为生物抗氧化防御的模型。Int.J. Mol.Sci.2022, 23, 14515。 https://doi.org/10.3390/。
在本文中,我们通过求解一维时间独立的schrödinger方程来开发出从表面上从表面发射的精确分析量子理论。可以通过离子,原子,纳米颗粒等引入的Quantu井可以简化为平方电位,其深度为H,宽度D和与表面L的距离。该理论用于分析量子井(D,H和L),阴极性质(工作函数W和Fermi Energy E F)和DC Fifferd f的效果。发现,量子井可能导致谐振隧道增强的轨道发射,最高几个数量级,比裸露的阴极表面大。同时,电子发射 - 能量光谱显着狭窄。强的增强区域受EFL +H≥W + C和EFL≤W的条件,E是基本电荷(正)(正),并且C在DC Fifferd f上持续依赖。还发现,带有直流f的电子发射能源谱的谐振峰遵循εp=εp0-efl,εp0大约是在没有dcfifeld的平方电位中固定在平方电位中的电子的特征力。该理论为高效率场发射器的设计提供了见解,该发射器可以产生高电流且高度简单的电子束。
环境监测是一个至关重要的领域,包括各种应用,包括海洋探索,野生动植物保护,生态系统评估和空气质量监测。从无法访问的位置和充满挑战的环境中收集准确,及时的数据是理解和解决环境问题的问题。机器人通过在前所未有的时空尺度上启用数据收集来提供有希望的解决方案。然而,仅依靠远程运行是不实际的,并限制了环境监测工作的效率和有效性。自主权在解锁机器人的全部潜力中起着关键作用,使其可以在复杂的环境中独立和聪明地操作。这项调查重点介绍了澳大利亚环境监测机器人中的高级决策问题。高水平的决策涉及战略计划和协调以优化数据收集。解决这些挑战使机器人可以在各种环境监测应用程序中自主浏览,探索和收集科学数据。尽管自动环境观察具有潜在的好处,但仍必须克服一些研究挑战。第一个挑战
