大多数分化良好的神经内分泌肿瘤 (NET) 都表达高水平的生长抑素受体,特别是 2 型和 5 型。生长抑素类似物 (SSA) 与生长抑素受体结合,用于缓解激素综合征和控制肿瘤生长。长效 SSA 奥曲肽长效缓释片和兰瑞肽因其可耐受的副作用而常用于一线转移性治疗。放射性标记的 SSA 既可用于成像,也可用于 NET 治疗。177 Lu-DOTATATE 是一种放射性标记的 SSA,已被证明可显著改善进行性中肠 NET 患者的无进展生存期,并被批准用于治疗转移性胃肠胰腺 NET。在治疗胃肠胰腺和肺 NET 患者时,一个关键问题是 177 Lu-DOTATATE 的治疗顺序,以及与其他全身治疗(如依维莫司)或肝脏导向治疗的关系。鉴于 NET 的异质性以及几乎没有比较积极治疗方案的随机试验,这个问题尤其复杂。这篇最先进的综述研究了支持在 NET 治疗的更广阔领域中使用生长抑素受体靶向治疗的证据,并提供了有关最佳患者选择、效益与风险评估和治疗顺序的见解。
自体抗CD19和抗BCMA CAR-T细胞在自身免疫性疾病适应症中表现出显着的功效(1,2)。为自身免疫性疾病开发同种异体CAR-T,由于可访问性,成本效益,现成的可用性提高,因此非常有吸引力的选择。(3,4)。此外,对于危害生命的癌症以外的适应症,例如自身免疫性疾病,安全要求甚至更高。因此,使用最小基因编辑的CAR特定于位置集成可能是设计同种异体CAR-T细胞的理想选择,以避免随机的插入诱变并支持大规模的生产性。因此,我们使用旨在治疗包括全身性红斑狼疮(SLE)在内的自身免疫性疾病的旨在治疗自身免疫性疾病的旨在治疗自身免疫性疾病的双重靶向CD19和BCMA同种异体CAR-T细胞(HY034)。
人端粒是串联阵列,主要由染色体末端的5'-Ttaggg -3'核苷酸序列组成。1,2这些序列被认为具有2个主要功能:它们通过保护或限制染色体的末端来保留基因组完整性,从而防止了DNA修复机制不适当的降解,并防止细胞分裂期间遗传信息的丧失。在每种分裂的情况下,端粒缩短了约50至200个碱基对,因为DNA聚合酶和相关的细胞机制的固有能力可以复制染色体DNA滞后链的末端端。3当端粒缩短达到临界阈值时,称为干草液极限时,会触发细胞信号级联,导致衰老或凋亡。4,5
癌症是每个人都担心的疾病,很明显人们对癌症感到担心。当前的文章讨论了癌症的各种治疗干预措施,例如R-CU疗法,CAR-T细胞疗法,现代医学系统的年代疗法。它还讨论了在R- CU疗法,CAR-T细胞疗法,CRISPR或尤其是时间疗法的癌症中的同种疗法干预。本文提出了一种基于同种疗法治疗系统与上述干预措施一致的治疗方案。在本文中还讨论了基于其基本医学(EM)特性(帮助该系统覆盖国家政策支持的群众)的属性的顺势疗法的应用。本文渴望同种疗法治疗系统在应对当前的非传染性疾病威胁(如癌症)中起着重要作用。关键字:R-CU,CAR-T,CRISPR,顺势疗法,癌症,MIASM
基因疗法被证明是治疗或预防眼部疾病的有效方法,以确保具有治疗作用的靶向,稳定和调节的外源遗传物质的引入。视网膜疾病可以大致分为两组,即单基因和复杂(多因素)形式。单基因形式的高遗传异质性代表了对基因特异性治疗策略的应用的显着限制。因此,对视网膜损害的共同途径的突变独立的治疗策略正在作为视网膜疾病的互补/替代方法获得兴趣。本综述将概述与突变无关的策略,这些策略依赖于调节这种关键退化途径的关键基因的调节中的调节。,我们将描述基于基因的方法如何探索神经营养因子,microRNA(miRNA),基因组编辑和光遗传学的使用,以恢复外部和内部视网膜疾病中的视觉功能。我们预测,应用于突变/基因独立方法的基因递送程序的开发可能会为大量患有遗传异质性和复杂视网膜疾病的大量患者的治疗需求提供答案。
-珠蛋白基因转移已被用作造血干细胞(HSC)基因治疗的范例,但遇到了重大困难,例如缺乏选择遗传校正的HSC的选择,需要对治疗基因的高级表达和细胞特异性转移的表达。It took more than 40 years for scientists and physicians to advance from the cloning of globin gene and discovering globin gene mutations to improving our understanding of the pathophysiological mechanisms involved, the detection of genetic modifiers, the development of animal models and gene transfer vectors, comprehensive animal testing, and demonstrations of phenotypic improvement in clinical trials, culminating in the authorization of the first gene therapy product for -2019年的地中海贫血。研究主要集中在慢病毒基因疗法媒介的发展上,表达了-珠蛋白基因的变体,或者最近针对的是靶向-蛋白抑制剂,其中一些人已经进入临床测试,并应很快将可用的治疗方法多样化并促进价格竞争。这些结果令人鼓舞,但我们尚未达到故事的结尾。正在开发新的分子和细胞工具,例如基因编辑或诱导多能干细胞的发展,预示了替代产物的出现,正在研究其效力和安全性。血红蛋白疾病构成了测试这些高级技术的利弊的重要模型,其中一些已经处于临床阶段。在这篇综述中,我们专注于高级产品的开发以及最新的技术创新,这些创新可能会在不久的将来进行临床试验,并为对这些严重条件的确定治愈提供了希望。
Tran,K.B。 1,2,3和Shepherd,P.R。 1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。 我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。 我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。 通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。 异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。 进行物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。 rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。 v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。 VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。 我们发现VEM + AXI组合协同抑制了肿瘤的生长。 有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。Tran,K.B。1,2,3和Shepherd,P.R。1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。我们发现VEM + AXI组合协同抑制了肿瘤的生长。有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。当Axi被我们的内部VEGFR2抑制剂SN35332替换时,该组合还提供了协同效应,这表明组合效应可能是特定于途径的。在EMT,p53,TGF-β和血管生成标志途径中鉴定出与途径相关的合成致死性。最后,我们开发了一种对vemurafenib抗性的细胞系,并表明VEM + Axi的组合使肿瘤复合BRAF抑制疗法。一起,这项研究提供了黑色素瘤生物学中VEGF轴与BRAF信号传导之间的重要联系,并共同靶向这两个轴可以增强BRAF抑制疗法的疗效,不仅在BRAF-突变剂中,而且在BRAF-wild型肿瘤中。
覆盖范围的概述概述富含血小板的血浆(PRP)被定义为富含血小板的浓缩物,其血小板水平大于全血的基线血小板计数。已经提出了这种自体衍生物质,也称为自体血小板衍生的生长因子,血小板凝胶,富含血小板的浓缩液,自体血小板凝胶,富含生长因子或血小板释放的血浆,以治疗多种疾病以增强愈合。CMS国家覆盖范围确定(NCDS)存在用于治疗慢性非治疗糖尿病伤口的自体PRP的国家覆盖范围测定(NCD)。有关覆盖范围的指南,请参阅NCD的血液衍生产品,以进行慢性非治疗伤口(270.3)。cms本地覆盖范围确定(LCD)和文章本地覆盖范围确定(LCD)/局部覆盖物(LCAS)(LCAS)用于自体PRP,用于治疗NCD未通过NCD特异性地解决其他慢性非治疗伤口,用于血液衍生产品,用于慢性非愈合伤口(270.3),并适用于这些Policies,并适用于这些Policisies,并适用于这些Policisies。有关特定LCD/LCAS,请参阅下面的“相关文档”部分中的表。LCD/LCA在PRP注射和/或应用中存在,作为管理肌肉骨骼损伤和/或联合条件的一种手段,并且在适用的情况下需要遵守这些政策。有关特定LCD/LCAS,请参阅下面的“相关文档”部分中的表。适用的代码仅供参考,以下程序和/或诊断代码提供了以下列表,并且可能不包含在内。其他政策和准则可以应用对于没有LCDS/LCA的州/领土的覆盖范围指南,NCD未针对血液衍生的慢性非治疗伤口提供的适应症(270.3),请参阅《联合卫生服务商业医疗政策》,标题为Prolotheraption和Platelet Platelet Rich Plasma Mathapies。在本政策中列出代码并不意味着代码所描述的服务是涵盖或未覆盖的卫生服务;但是,可以在下面的列表中包含语言,以指示是否未覆盖代码。卫生服务的福利覆盖范围由成员特定的福利计划文件和可能需要特定服务覆盖的适用法律确定。纳入代码并不意味着要偿还或保证索赔付款的任何权利。
Xenpozyme™(olipudase alfa-rpcp)Elfabrio®通常被排除在覆盖范围之外。如果法律或福利计划的要求,可以进行覆盖审查。请参阅《医疗福利药物政策》,标题为“医疗福利治疗等效药物” - 排除药物和相应的排除药物清单,具有首选替代品。注意:有关需要医疗必要性审查的请求,也请参阅下面的特定标准部分(有关Medicare评论,请参阅CMS部分*)。Coverage for Aldurazyme, Elaprase, Fabrazyme, Kanuma, Lamzede, Lumizyme, Mepsevii, Naglazyme, Nexviazyme, Nulibry, Pombiliti, Revcovi, Vimizim, and Xenpozyme is contingent on criteria in the Drug-Specific Criteria section below.药物特异性标准aldurazyme(Laronidase)被证明用于治疗粘多糖含量I(MPS I)。aldurazyme在医学上是必要的:
