本综述介绍了A 2 M 3 O 12和相关陶瓷家族中的材料历史,包括它们的异常热膨胀及其对机制的当前理解,以及相关因素,例如水平镜和单斜骨对正常相位过渡。在当前的知识,挑战和应用机遇方面介绍了其他特性,包括热机械,热和离子传导以及光学特性。最大的挑战之一是整体的生产,总结了整合和烧结的各种方法。这些陶瓷与其他材料相结合时具有很大的希望,并且提出了此类复合材料的最新进展。这些问题是在负和接近零热扩展陶瓷的潜在应用的背景下,这仍然对未来的材料研究人员面临挑战。
摘要:二维(2D)材料中的本地带隙调整对于电子和光电设备而言至关重要,但是在纳米级实现可控制和可重复的应变工程技术仍然是一个挑战。在这里,我们通过扫描探针报告了热机械纳米引导,以在2D过渡金属二核苷剂和石墨烯中创建应变纳米图案,从而在空间分辨率下以调制的带隙启用任意模式,以降低到20 nm。2D材料通过范德华的相互作用与下面的薄聚合物层相互作用,由于加热探针的热和压痕力而变形。特别是,我们证明了钼二硫化(MOS 2)的局部带隙被空间调节高达10%,并且可以约180 MeV的幅度调整为180 MEV,以菌株的线性速率约为-70 meV。该技术提供了一种多功能工具,用于研究具有纳米尺度分辨率的2D材料的局部应变工程。关键字:2D材料,应变纳米图案,钼二硫化,局部带隙,热扫描探针光刻,尖端增强的拉曼光谱■简介
本研究设计并数值研究了一个新的热控制系统,用于用于航天器系统光学有效载荷的检测器。系统使用热电冷却器(TEC)作为维护冷手指在所需的设定点保持探测器温度的活性元件,使其在整个操作过程中保持在所需的范围内。该系统没有使用任何热管网络,而是使用附着在TEC热侧的辐射器将热负载耗散到环境空间环境中。使用有效属性的系统级建模用于对TEC的性能进行建模,而无需对任何内部复杂的几何形状进行建模。与温度相关的电流轮廓用作TEC的输入条件,因此TEC仅消耗所需的外部功率。研究了散热器的TEC设定点和几何参数的效果,并观察到,通过使用较大的设定点或具有较大尺寸的散热器,获得了功耗或提高性能系数的大幅度降低。该系统将进一步研究不同的热载荷和占空比(在100分钟的轨道周期内高达50%),以评估其在不同操作条件下的功效。还研究了该系统的连续操作周期,可以观察到,连续循环之间的循环误差最终将其变为零至零,因此表明在整个系统的整个生命中,都满足了连续的循环的温度控制要求。
为什么我们要使用太阳玻璃?“情绪戒指”背后的科学是什么?这两个配件的例子以铬材料的流派为中。铬材料是通过由外部刺激的影响引起的物质的电子密度(ð或d电子)改变各种颜色的材料。在大多数情况下,颜色变化是可逆的和可控制的。取决于外部刺激的性质,使用前缀为前缀的后缀染色体命名,该前缀用于描述刺激导致颜色变化。像热色素相似,与外部刺激热有关,光色素与光有关,由于离子的交换而发生离子化,息肉性与刺激的电位相关,溶剂化的溶剂与溶剂与溶剂相关,溶剂与溶剂交易,蒸气色素敏感受到蒸发和机械刺激的影响。表1提供了铬现象和负责任刺激的全面列表[1-3]。
立面是控制建筑物太阳能流并影响其能量平衡和环境影响的主要接口。最近,已经探索了半透明聚合物的大规模3D打印(3DP),作为一种制造具有定制特性和功能的立面组件的技术。透射率对于建筑外墙至关重要,因为对太阳辐射的响应对于获得舒适感至关重要,并且会极大地影响电力和冷却需求。但是,仍不清楚3DP参数如何影响半透明聚合物的光学性质。本研究建立了一个实验程序,将PETG组件的光学特性与设计和3DP参数相关联。观察到打印参数控制层沉积,该沉积控制层中的内部光散射和整体光传输。此外,层分辨率决定角度依赖性属性。表明,可以调整打印参数以获得量身定制的光学特性,从高正常透明度(≈90%)到透明度(≈60%),并且具有一定范围的雾霾水平(≈55-97%)。这些发现为大规模3DP的定制立面提供了机会,可以有选择地接纳或阻止太阳辐射,并提供空间的均匀日光。在建筑部门脱碳的背景下,这种组件具有减少排放的巨大潜力,同时确保乘员舒适。
量子热力学的资源理论一直是一个非常成功的理论,并且在社区中产生了很多后续工作。,它要求在系统,浴室和催化剂上实施能源的统一操作,作为其范式的一部分。到目前为止,这种统一的操作被认为是该理论中的“免费”资源。但是,这只是一个不必要过程的理想化。在这里,我们包括一个额外的辅助控制系统,该系统可以通过打开或关闭的交互来自主实现统一。”但是,由于统一的实施而导致的背部。我们得出了控制装置质量的条件,因此热力学定律不会通过使用良好的量子时钟来改变并证明量子力学定律允许反应足够小,从而可以满足这些条件。我们将非理想的控制纳入资源框架也会引起有趣的前景,在考虑理想化的控制时,这是不存在的。除其他外,第三定律的出现而无需假设光锥。我们的结果和框架将自动量热机器的自动量量子资源理论统一,并为所有量子加工设备与完全自主机统一的所有量子处理设备奠定了基础。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力