智能计划会随着时间的推移从用户的温度调节和存在模式中学习,以创建自定义的温度计划。Nest Learning Thermostat(第 4 代)将建议更改用户的计划,以优化舒适度和节能效果。用户可以允许 Nest Learning Thermostat(第 4 代)自动应用这些更改,先查看,然后接受或拒绝建议,或完全禁用智能计划。智能计划在使用的第一周内会学习最多,但永远不会停止学习。即使选择了“自动应用”,当恒温器更改其计划时,用户也会始终收到通知。当恒温器从用户的手动温度调节中“学习”时,恒温器也会在恒温器和应用程序中以视觉方式指示。用户可以随时查看 Google Home 应用程序中的“历史记录”标签,查看何时进行了更改。如果用户的习惯或计划发生了重大变化,用户可以重置智能计划学习,从那时起,恒温器将开始学习他们的偏好。
本文档适用于以专业身份使用 Nest 恒温器的任何个人,主要针对 HVAC 专业人士。但是,它对其他行业的专业人士也很有用,例如建筑商、家庭安全、定制集成、能源效率和电气。本文档为这些行业中的各种角色提供了有价值的信息,包括技术人员、安装人员、销售代表、经理、工程师、建筑师、支持人员、运营人员及其各自的批发合作伙伴。但是,当我们在本文档中使用术语“专业人士”时,我们特指 HVAC 技术人员或安装人员。
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。
量子热力学的资源理论一直是一个非常成功的理论,并且在社区中产生了很多后续工作。,它要求在系统,浴室和催化剂上实施能源的统一操作,作为其范式的一部分。到目前为止,这种统一的操作被认为是该理论中的“免费”资源。但是,这只是一个不必要过程的理想化。在这里,我们包括一个额外的辅助控制系统,该系统可以通过打开或关闭的交互来自主实现统一。”但是,由于统一的实施而导致的背部。我们得出了控制装置质量的条件,因此热力学定律不会通过使用良好的量子时钟来改变并证明量子力学定律允许反应足够小,从而可以满足这些条件。我们将非理想的控制纳入资源框架也会引起有趣的前景,在考虑理想化的控制时,这是不存在的。除其他外,第三定律的出现而无需假设光锥。我们的结果和框架将自动量热机器的自动量量子资源理论统一,并为所有量子加工设备与完全自主机统一的所有量子处理设备奠定了基础。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
HEET与MIT ESI和MIT Open Learning合作,在1月30日至31日在独立活动期(IAP)的1月30日至31日提供了为期两天的课程“地热能网络:改变我们的热能系统”。本课程的目标是为参与者提供地热网络如何将热系统转换为清洁可再生能源的概述。本课程将汇集不同的专家和利益相关者,以涵盖以下主题,因为它们与地热能网络(GENS)相关:构建气候变化和能源挑战;劳动力,健康和环境正义;政策创新;城市和社会规模的扩张;设计原则;钻探,建筑和调试;生产力的建模和对电网的影响;和案例研究。
摘要:对小规模系统的热力学的最新理解已使对固定输入状态实施量子过程的热力学要求的表征。在这里,我们将这些结果扩展到构建给定过程的最佳通用实现,即即使在许多独立且相同分布(I.I.D.)重复该过程。我们发现,这种实用的最佳工作成本率是由过程的热力学能力给出的,该过程的热力学能力是单字母和添加剂定义为输入和输出输出之间热状态的相对熵的最大差异。除了是量子通道的反向香农定理的热力学类似物之外,我们的结果还引入了量子典型性的新概念,并提出了凸出方法的热力学应用。
由于仪器错误和软件限制,介电膜的折射率小于50 nm。在解决这个问题时,我们报告了椭圆测量Pro;可靠地评估折射率的可靠评估,以对沉积的各种热生长和化学蒸气,CVD,SI底物的介电膜,介电膜降低到约10 nm的厚度,并且我们在膜片界面界面上的当前了解的结果比较了结果。在所有研究的情况下,我们都发现界面区域在光学上与厚膜不同,并且精确的膜处理实质会改变界面区域的性质。-