量子热力学是一个新兴的研究领域,旨在将标准热力学和非平衡统计物理扩展到远低于热力学极限的尺寸集合、非平衡情况,并完全包含量子效应。在实验进展和未来纳米级应用潜力的推动下,来自不同背景的科学家(包括统计物理学、多体理论、介观物理学和量子信息理论)正在进行这项研究,他们为该领域带来了各种工具和方法。正在解决的理论问题包括量子系统的热化问题和“功”的各种定义,以及量子引擎的效率和功率。本概述为研究生和研究人员提供了对这些当前趋势的精选观点。
I. 引言 全球对清洁和可再生能源的需求能够最好地应对日益增长的燃料消耗问题,这促进了储能系统的使用。文献中介绍了具有不同特性和容量的不同类别的电池 [1]–[3]。锂离子电池的高能量密度和重量轻使其成为储能市场的主导者,尤其是在汽车应用方面 [4]。锂离子电池的安全运行需要管理其在充电和放电过程中的温度变化。高温会损坏储能系统甚至引起爆炸,而低温会对电池造成不可逆转的损坏 [5]。因此,为确保锂离子电池的正常运行,应将温度保持在 15°C 至 35°C 的最佳范围 [6]。能够散发产生的热量的热管理系统对锂离子电池至关重要。适当的冷却方法有助于管理电池的热行为,提高安全性和使用寿命。它确保电池组内部温度分布均匀,避免局部性能下降,并散发产生的热量,以保持电池组内部温度处于最佳范围 [7]。适当的冷却方法可以提高安全性并延长电池寿命。
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Lala Rajaoarisoa 5,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学、法国国立科学研究院、土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系,01026 日利纳,斯洛伐克 4 奥斯特拉发 VSB 技术大学电气工程与计算机科学学院电信系,70800 奥斯特拉发,捷克共和国 5 IMT Nord Europe,里尔大学,数字系统中心,F-59000 里尔,法国
*G60:证书N°53.22.221 Hikmicro G60手持式热摄像机是专门设计用于温度测量的。它配备了640 x 480分辨率的热检测器。它可以帮助工作人员快速找到环境中的高温目标。同时,它为决策提供了帮助并确保安全。该设备主要应用于建筑,HVAC,汽车行业等各个行业。
我们开发了一种基于自主量子热机的经典计算物理模型。这些机器由连接到不同温度的几个环境的少数相互作用的量子比特 (qubit) 组成。这里利用流经机器的热流进行计算。该过程首先根据逻辑输入设置环境的温度。机器不断发展,最终达到非平衡稳定状态,从中可以通过辅助有限尺寸储层的温度确定计算的输出。这种机器,我们称之为“热力学神经元”,可以实现任何线性可分函数,我们明确讨论了 NOT、3-MAJORITY 和 NOR 门的情况。反过来,我们表明热力学神经元网络可以执行任何所需的功能。我们讨论了我们的模型与人工神经元(感知器)之间的密切联系,并认为我们的模型提供了一种基于物理的替代神经网络模拟实现,更广泛地说,是一种热力学计算平台。
摘要:过渡金属复合物中的热诱导的自旋横断现象是熵驱动的过程,已通过量热法进行了广泛的研究。然而,与分子自旋态切换相关的过量热容量从未在实际应用中探索。在本文中,我们通过实验评估了由自旋杂交膜引起的热阻尼效应,对金属微管的瞬时加热响应,并由电流脉冲加热。由于分子膜的自旋态切换,在数十微秒的时间尺度上,电线温度的阻尼最高可达10%。我们展示了快速的热充电动力学和可忽略不计的疲劳性,与自旋跃迁的固体性质一起,它似乎是在功能设备中实现热能管理应用的有前途的特征。
摘要 热能存储 (TES) 和需求响应 (DR) 通过弥合制冷能源需求与生产之间的差距,为减少电力消耗、碳排放、投资和制冷能源的运营成本提供了独特的优势。为了向政策制定者、系统规划者、投资者、清洁能源倡导者和其他相关方提供全面的指导,以加速 TES 和 DR 技术的发展,本文全面概述了最常见的制冷用途的 TES 和 DR 策略,涵盖了工作原理、优势、发展阶段、技术限制、适用应用和向低碳经济转型的潜在增长机会。还讨论了研究方向和政策建议,以更好地开发和部署 TES 和 DR,特别是在亚洲。能源用户和系统规划者可以选择最合适的 TES 和 DR 技术来减少其能源系统的电力消耗和碳排放,而政策制定者、投资者和清洁能源倡导者可以为消除 TES 和 DR 部署的经济、监管或客户相关障碍做出贡献,这将共同帮助充分释放 TES 和 DR 技术巨大的经济和环境潜力。关键词:热能存储、需求响应、相变材料、低碳、清洁能源 JEL分类:O、O3、O31
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
抽象断层区域展示了3D可变厚度,该特征仍然不足,特别是在对流体流动的影响方面。分析分析溶液后,我们通过基准实验检查了3D热氢(Th)动力学模型,该实验结合了一个断层区,其厚度变化对应于逼真的数量级。这些发现强调了一个关注区域,其中剧烈对流驱动流体流动,导致在断层区最厚的部分的浅深度下,温度升高到150°C。此外,通过考虑3D热氢化机械(THM)模型中的各种构造制度(压缩,延伸和滑行)模型,并将其与基准测试实验进行比较,我们观察到在感兴趣的面积内作用于流体流动的流体压力引起的流体压力变化。这些构造引起的压力变化会影响区域的热分布和温度异常的强度。这项研究的结果强调了孔弹性驱动力对转移过程的影响,并强调了将断层几何形状作为关键参数的重要性,这是对破裂系统中流体流量的未来研究。此类研究在地热能,CO 2存储和矿藏中具有相关的应用。
了解电热 SiC 功率 Mosfet 在短路等极端异常操作中的行为是认证的主要需求,尤其是对于关键或长寿命应用。但模拟电子元件中的短路非常困难,因为我们需要一个完全电热的多物理模型。我们还需要模拟顶部铝电极的熔化。我们使用“表观热容量”方法来模拟这种熔化,该方法考虑了潜热和熔化过程中所需的吸收能量。因此,本文首次提出了一个数值有限元模型,该模型在 2D 中完全模拟了 SiC 功率晶体管在短路状态下的动态电热行为。与现有的 1D 模型相比,该模型的几何精度提供了显着的附加值。