爱尔兰都柏林技术大学电气和电子工程学院的光子研究中心。B Tyndall国家研究所,大学科克大学科克,李·麦芽(Lee Maltings),戴克游行,爱尔兰科克。c数学,物理和电气工程系,诺森比亚大学,纽卡斯尔,泰恩NE1 8日,英国。* d19125415@mytudublin.ie
摘要:在描述主动推理代理 (AIA) 时,“能量”一词可以具有两种不同的含义。一种是 AIA 利用的能量(例如,电能或化学能)。第二个含义是所谓的变分自由能 (VFE),这是一个统计量,它提供了意外的上限。在本文中,我们开发了前一个量——热力学自由能 (TFE)——及其与后者的关系的说明。我们在一个通用的量子信息理论公式中强调了这两者之间的必要权衡,以及这些权衡对生物接近其环境的方式的宏观影响。通过明确这种权衡,我们为从植物到捕食者的生物用来生存的不同代谢策略提供了理论基础。
对混合物的热力学特性的了解对于化学工程至关重要。然而,混合物的纯粹组合多样性使得无法实验研究每种相关混合物,从而使可靠的词典方法是必不可少的。组分组方法(GCM)被广泛用于此目的。最完善的GCM是预测液体混合物中的效率系数的UNIFAC。自1975年引入[3]以来,它已不断修订和改进[15、4、12、16、5、17],并在基本上所有过程模拟器中实施,强调了其持久的相关性和成功。我们使用最新发布的UNIFAC [17],在此标记为Unifac 1.0,作为参考。uniFAC 1.0将组件分解为结构组,将其应用于给定的混合物需要成对相互作用参数(a),对于发生的主组M和N的每个二元组合。ever,由于缺乏直接拟合的实验数据,在某些情况下,所有组对组的相互作用参数缺少56%的组,在某些情况下,由于有挑战性的拟合过程,这会严重阻碍unifac 1.0的适用性(单个丢失的相关参数会阻止使用该模型)。未知的MN可以使用基于COSMO的预测方法或原子相互作用参数的人工训练数据来估算MN。然而,两种方法都产生不可靠的结果,并且无法与实验蒸气液平衡(VLE)数据相匹配[13]。在这项工作中,我们介绍了一种基于机器学习的GCM相互作用参数的新方法。该方法基于以下想法:配对参数可以视为方形矩阵的元素和
包装行业是塑料的主要用户,它贡献了进入我们环境的最高塑料废物。因此,诸如基于生物的塑料之类的替代品已经出现并变得越来越商业化。热塑性淀粉(TPS)是生产生物塑料膜中使用的原材料之一。但是,使用TPS的主要缺点是由于其机械性较低,障碍性能较差和蓬松性。本评论文章将TPS摘要作为食物包装材料的选择。它通过掺入生物填充物和Essentials Oils来回顾有关TPS改进的最新研究。它还描述了对TPS增强生物膜对膜特性(包括机械,屏障和抗菌特性)的影响。本文还讨论了TPS增强生物膜的性能,以确保食品包装应用食品的货架稳定性和易腐性。最后,它还强调了食品包装行业TPS增强生物膜的挑战和机会。
抽象的电池能量转换在推进储能和转换技术方面是至关重要的,这是可持续能源系统的主题。这项研究深入研究了电池操作的基础热力学原理,探讨了储能,释放和转换的复杂过程。通过检查电池内的电化学反应,该研究强调了如何有效地存储和转换能量,重点是关键参数,例如熵,焓和吉布斯自由能。对这些热力学特性进行了研究对于优化电池性能,提高能量密度和提高整体效率至关重要。该研究调查了包括锂离子,固态和下一代电池在内的各种电池化学分配,以揭示其热力学行为的复杂性。此外,它解决了影响电池寿命和安全性的热管理和降解机制的挑战。本文强调了热力学在推动电池技术创新方面的重要性,旨在开发更高效,可靠和可持续的储存解决方案,这对于可再生能源和电动移动性的未来至关重要。
2理论4 2.1超导量子干扰装置。。。。。。。。。。。。。。。4 2.1.1超导性。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.1.2通量量化。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.1.3约瑟夫森(Josephson)和约瑟夫森(Josephson)交界处。。。。。。。。。。。。。。。9 2.1.4约瑟夫森交界处的电压状态。。。。。。。。。。。。。。。。11 2.1.5磁场中的约瑟夫森连接。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 2.1.6 DC平台。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.2噪声热集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 2.1,1热噪声。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 2.2.2噪声温度计。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。21
Mirxes的联合创始人兼首席执行官Zhou Lihan博士分享说:“ Mirxes是精密医学的强烈拥护者,认识到其对癌症患者的巨大潜力和有效治疗的潜力。在过去的10年中,Mirxes与NUH和其他本地研究和临床机构合作,开发和商业化基于RNA的新型癌症早期检测解决方案,例如胃肠道,在Thermo Fisher的PCR平台上。近年来,我们在建立多摩变和下一代测序能力方面进行了巨大的投资,以在癌症护理连续体中为贫乏服务的东南亚地区提供全方位的精确诊断解决方案。我们很高兴与诸如Thermo Fisher和NUH等既定和长期合作伙伴的合作进行扩展,以进一步扩大我们的临床诊断产品,利用我们广泛的区域临床测试网络,使他们更容易获得新加坡和东南亚地区的患者。”
随着连续可穿戴的生理监测系统在医疗保健方面变得更加普遍,因此对可以在长时间持续时间可持续能够可持续使用电源的无线传感器和电子设备的功率来源。使用热电发生器(TEG)收集可穿戴能量,其中人体加热转化为电能,这是一种有希望的方法来延长无线操作并解决电池寿命的问题。在这项工作中,引入了高性能TEG,将3D打印的弹性体与液态金属环氧聚合物复合材料和热电半导体相结合,以实现与人体的弹性合规性和机械兼容性。热电特性在能量收集(seebeck)和主动加热/冷却(毛皮)模式中都具有特征,并检查在各种条件下(例如坐着,步行和跑步)的可穿戴能量收获的性能。在户外行走时戴在用户的前臂上时,TEG阵列能够使用光子传感器收集光摄影学(PPG)波形数据,并使用板载蓝牙蓝牙低能(BLE)无线电器将数据无线传输到外部PC。这代表了在可持续磨损的智能电子产品的道路上向前迈出的重要一步。
问题虽然热塑性材料广泛应用于增材制造 (AM),并已显示出强度高、重量轻和生产成本相对较低等优势,但它们也具有某些缺点,例如熔化温度较低以及在长期应力负荷下容易拉伸和变弱。由于熔丝制造 (FFF) 和熔粒制造 (FGF) 等方法只能处理热塑性材料,因此迫切需要开发新的挤出方法来处理具有低热膨胀系数 (CTE) 的热固化热固性材料,以用于高强度和高温应用。即使是当今最先进的打印机产品也存在差距,禁止使用工业和军事相关应用中常见的高级热固性复合材料。
热导率(𝜿)控制热量如何在材料中传播,因此是一个关键参数,它约束光电设备的寿命和热电学(TES)的性能。在有机电子中,了解决定的是难以捉摸且具有实验性挑战。在这里,通过在不同的空间方向上测量𝜿 𝜿 𝜿 𝜿 𝜿 𝜿 𝜿,它可以统计地显示微观结构如何解锁两个明显不同的热运输方式。𝜿在远程有序聚合物中遵循标准的热传输理论:改进的排序意味着更高的𝜿和各向异性增加。𝜿随着骨架,较高的分子量和较重的重复单位而增加。在其中,电荷和热传输齐头并进,可以单独通过胶片纹理将其解耦,并由分子动力学模拟支持。,𝜿与持久性长度和重复单元的质量负相关,因此发现了异常的行为,尽管有用,但却是有用的。重要的是,对于准无形共聚合物(例如,IDT-BT)𝜿随着电荷迁移率的增加而减小,与半晶体对应物(在可比较的电力电导率下)相比,降低了10倍。最后,提供了有机半导体中高和低的特定材料设计规则。